63813 (Электрические и магнитные методы контроля РЭСИ)

2016-08-01СтудИзба

Описание файла

Документ из архива "Электрические и магнитные методы контроля РЭСИ", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63813"

Текст из документа "63813"

Министерство образования Республики Беларусь

Белорусский государственный университет информатики и

радиоэлектроники

кафедра РЭС

РЕФЕРАТ

на тему:

«Электрические и магнитные методы контроля РЭСИ»

МИНСК, 2008

Электрические методы

Электрические методы неразрушающего контроля (ЭМНК) основаны на созда­нии в контролируемом объекте электрического поля либо непосредственным воздействием на него электрическим возмущением (например, электростати­ческим полем, полем постоянного или переменного тока), либо косвенно с по­мощью воздействия возмущениями неэлектрической природы (например, теп­ловым, механическим и др.). В качестве информативного параметра ис­пользуются электрические параметры объекта контроля (емкость, тангенс угла потерь, проводимость).

Рисунок 1 – Номограмма для определения толщины эпитаксиальной плен­ки (d) и концентрации электронов в подложке (N) в структуре nn+ GaAs при л = 10,6 мкм,

- линии равной концентрации

- линии равной толщины

По назначению ЭМНК делятся по определению исследуемых характери­стик состава и структуры материала на электроемкостные, электропотенциаль­ные и термоэлектрические.

1. Электроемкостной метод контроля (ЭМК) предусматривает введение объ­екта контроля или его исследуемого участка в электростатическое поле опре­деление искомых характеристик материала по вызванной им обратной реак­ции на источник этого поля.

Информативность ЭМК определяется зависимостью первичных парамет­ров емкости, тангенса угла потерь от характеристик объекта контроля, (ди­электрической проницаемости и коэффициента диэлектрических потерь (см. рис. 2). Косвенным путем с помощью ЭМК можно определить и другие фи­зические и структурные характеристики материала: плотность, содержание компонентов, механические параметры, радиопрозрачность, толщину, прово­дящие и диэлектрические включения и т.п.

Примеры значений диэлектрической проницаемости и тангенса угла ди­электрических потерь электроизоляционных материалов на высоких частотах 105-108 Гц приведены в приложении.

2. Электропотенциальные методы.

Работа электропотенциальных приборов основана на прямом пропускании тока через контролируемый участок и измерении разности потенциалов на определенном участке.

Рисунок 2 – Схема воздействия характеристик объекта

контроля на электриче­ские параметры

При пропускании через электропроводящий объект электрического тока в объекте создается электрическое поле. Геометрическое место точек с одинако­вым потенциалом составляет эквипотенциальные линии (рис. 3). На рисун­ке показано распределение эквипотенциальных линий при отсутствии (рис. 3,а) и наличии дефекта (рис. 3,6). Разность потенциалов зависит от трех факторов: удельной электрической проводимости а, геометрических размеров (например, толщины) и наличия поверхностных трещин. При пропускании переменного тока разность потенциалов будет зависеть и от магнитной про­ницаемости м.

Рисунок 3 – Распределение эквипотенциальных линий

В приборах имеется четыре электрода. С помощью двух из них (токопрово-дящих) к контролируемому участку подводится ток, а два других измеритель­ные измеряют разность потенциалов на определенном расстоянии (обычно не более 2 мм), по которой судят о глубине обнаруженной трещины.

Электропотенциальные приборы применяют для измерения толщины сте­нок деталей, для изучения анизотропии электрических и магнитных свойств, обусловленной приложенными к объекту контроля механическими напряже­ниями, но основное назначение этих приборов – измерение глубины трещин, обнаруженных другими методами неразрушающего контроля. Электропотен­циальный метод с использованием четырех электродов, является единствен­ным методом, который позволяет осуществить простое измерение глубины (до 100 - 120 мм ) поверхностных трещин.

В этом смысле характерным представителем таких приборов является при­бор – измеритель глубины трещин типа ИГТ – 10НК позволяющий контроли­ровать глубины трещин от 0,5 до 20 мм в ферромагнитных, аустенитных ста­лях с 10% относительной погрешностью.

Применение измерителей глубины трещин совместно с другими методами, например, магнитопорошковым или капиллярным, позволяет повысить эф­фективность обнаружения трещин.

Помимо контроля трещин электропотенциальные методы используются при контроле удельного сопротивления полупроводниковых структур.

3. Термоэлектрические методы.

Приборы неразрушающего контроля, основанные на термоэлектрическом ме­тоде, находят применение при контроле деталей по маркам сталей, при контроле полупроводниковых пластин по типам проводимостей и т.д.

а) Контроль деталей по маркам сталей.

Источником информации о физическом состоянии материала при термо­электрическом методе неразрушающего контроля является термо-ЭДС, возни­кающая в цепи, состоящей из пары электродов (горячего и холодного) и на­личие контролируемого металла или полупроводника.

Обработка информации может проводиться или путем прямого преобразо­вания или дифференцированным методом (рис. 4,а и рис. 4,б).

Сущность работы приборов по схеме прямого преобразования заключается в следующем. Контролируемый образец 1 помещают на площадку холодного электрода 3. К контролируемой поверхности прикасаются горячим электро­дом 2, нагреваемым элементом 4. В месте контакта горячего электрода возникает термо-ЭДС, и ток начинает протекать в цепи, в которую включен индикаторный прибор V.

При работе прибора по дифференцированной схеме к холодным электро­дам, на которых размещены: образец 5 из известной марки стали и контроли­руемая деталь 1, подключен индикаторный прибор V. К этим деталям одно­временно прикасаются горячим электродом - щупом 2 и, наблюдая за показа­ниями индикаторного прибора V, судят о принадлежности контролируемой детали к марке стали образца.

Регистрация результатов контроля возможна тремя способами: по углу от­клонения стрелки индикаторного прибора, по измерению знака термо-ЭДС и по индикации нулевого показания.

В таблице 1. приведены значения термо-ЭДС для некоторых сталей.

Контроль типа проводимости монокристаллических слитков и пластин

Для (кремния или арсенида галлия) n – типа горячий токоподвод имеет положительную полярность, а холодный – отрицательную. При нагреве токоподвода скорость электронов в нем становится больше, чем в холодном, по­этому они диффундируют от горячего токоподвода к холодному до тех пор, пока горячий токоподвод, отдавший электроны, не окажется заряженным по­ложительно а холодный токоподвод получивший избыток, зарядится отрица­тельно (рис.5,а) (в кремнии или арсениде галлия), дырки диффундируют от горячего токоподвода к холодному и горячий токоподвод заряжается отрица­тельно (рис.5,б).

Таблица 1

Значения термо-ЭДС для марок сталей.

Марка стали

Значение термо-ЭДС, мВ

40Х14Н14В2М

0,30 – 0,38

10Х18Н10Т

0,27 – 0,36

ЗОХГСНА

0,16 – 0,28

18ХНВА

0,15 – 0,27

ЗОХГСА

0,12 – 0,18

ЭИ868

0,13 – 0,19

12ХНЗА

0,02 – 0,06

10

-0,07 – +0,09

20

-0,09 – +0,11

25

-0,09 – +0,11

45

-0,11 – +0,11

15ХА

-0,17 – +0,11

ЭИ617

-0,21 – +0,14

16ХГТА

-0,27 – +0,20

ЭИ617

-0,28 – +0,23

16ХГТА

-0,27 – +0,30

ЭИ347

-0,28 – +0,23

10X18

-0,27 – +0,30

Р18

-0,30 – +0,32

20X23

-0,31 – +0,33

10Х12М

-0,37 – +0,41

10X12Ф1

-0,40 – +0,46

Рисунок 4 – Схемы контроля путем прямого преобразования (а) и диф-ферен­цированным методом(б)

Рисунок 5 – Контроль типа проводимости полупроводников по знаку термо-ЭДС: а) n-тип; б) р-тип.

Магнитные методы

Методы основаны на взаимодействии магнитного поля с контролируемым объектом.

Контролируемый объект помещается в магнитное поле. Встретив на своем пути препятствия в виде дефектов - (трещин, расслоений, газовых пузырей, раковин и др.) с меньшей магнитной проницаемостью, часть магнитных сило­вых линий выходит на поверхность объекта, образуя вокруг этого дефекта по­ля рассеяния (рис.6). Для регистрации полей рассеяния над дефектами применяют несколько методов: магнитопорошковый; магнитографический и магнитоферрозондовый.

Возможность применения магнитных методов и конкретные параметры контроля изделий зависят от магнитных свойств материала. Если в магнитное поле поместить тело из ферромагнитного материала, то после удаления источ­ника намагничивания тело сохранит некоторую остаточную намагниченность.

Рисунок 6 – Схема магнитного контроля при расположении дефекта поперек (а) и вдоль (б) магнитных силовых линий

1. Магнитопорошковый метод.

Магнитопорошковый метод регистрации полей рассеивания при неразрушающем контроле основан на явлении притяжения частиц магнитного порошка в местах вы­хода на поверхность контролируемого изделия магнитного потока, связанного с на­личием нарушений сплошности. В намагниченных изделиях из ферромагнитных материалов нарушения сплошности (дефекты) вызывают перераспределение магнит­ного потока и выход части его на поверхность (магнитный поток дефекта). На по­верхности изделия создаются локальные магнитные полюсы, притягивающие части­цы магнитного порошка, в результате чего место дефекта становится видимым.

Метод служит для выявления дефектов типа тонких поверхностных и под­поверхностных нарушений сплошности: трещин, расслоений, непроваров сварных соединений и т. п.

Метод позволяет контролировать изделия любых размеров и форм если их магнитные свойства дают возможность намагничивания до степени, достаточ­ной для создания магнитного поля дефекта необходимого для притяжения частиц магнитного порошка.

Чувствительность метода определяется магнитными характеристиками ма­териала контролируемого изделия, его формой и размерами, чистотой обра­ботки поверхности, напряженностью намагничивающего поля, способом кон­троля, взаимным направлением намагничивающего поля дефекта, свойствами применяемого магнитного или магнитно- люминесцентного порошка спосо­бом нанесения суспензии (или сухого порошка), а также освещенностью ос­матриваемого участка изделия.

В зависимости от размеров выявляемых поверхностных дефектов устанавли­ваются три условных уровня чувствительности указанные в таблице 2

Таблица 2

Уровни чувствительности магнитопорошковых методов.

Условный уровень чувствительности

Ширина выявляемого дефекта, мкм

Минимальная протяженность вы­являемой части дефекта, мкм

А

2,5

Свыше 0,5

Б

10,0

Свыше 0,5

В

25,0

Свыше 0,5

Магнитопорошковый метод контроля предусматривает следующие техноло­гические операции:

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее