124357 (Синтез закона управления и настройка промышленного регулятора для стабилизации температуры в условиях возмущений), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Синтез закона управления и настройка промышленного регулятора для стабилизации температуры в условиях возмущений", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "124357"

Текст 2 страницы из документа "124357"

Для описания объектов управления, в которых отсутствует зависимость переменных состояния, управления от пространственных координат (линейные многомерные системы с сосредоточенными параметрами), используются системы линейных обыкновенных дифференциальных уравнений или соответствующие изображения по Лапласу. Рассмотрим многомерную линейную систему с m управлениями, l возмущениями и k входами. Модель линейной системы с сосредоточенными параметрами во временной области:

где х(t) – вектор состояния системы, ;

u(t) – вектор управлений (входов), ;

у(t) – вектор выходов, ;

f(t) – вектор возмущений, ;

А – матрица размерности n x n;

В – матрица размерности n x m;

D – матрица размерности n x l;

С – матрица размерности k x n.

Применяя преобразование Лапласа к системе, получим эквивалентную модель в комплексной области:

Частотное или временное представления выбираются из соображений удобства, так как в случае постоянных матриц A, B,C и D они эквивалентны.

Для построения подобных моделей можно использовать два пути: применять фундаментальные физические соотношения в виде законов сохранения вещества, энергии или восстанавливать параметры моделей по эмпирическим данным, причем второй путь более часто применяется на практике.

2.2 Экспериментальные данные

Для построения математической модели объекта управления использовался метод восстановления параметров модели по эмпирическим данным. Для этого с помощью лабораторной установки были получены экспериментальные данные для исследования объекта управления и построения его математической модели. Результаты снятия экспериментального переходного процесса приведены в Приложении Б. Полученные данные были аппроксимированы в среде научных исследований MatLab. В результате получился график переходного процесса, представленный на рисунке 2.1.

Рисунок 2.1 – Экспериментальный переходный процесс

На рисунке 2.1 по оси ординат отложена температура в °C, а по оси абсцисс – время в секундах. При этом на самом графике кружочками обозначены непосредственно экспериментальные точки, определенные в дискретные моменты времени.

Нормированный переходный процесс представлен на рисунке 2.2.

Рисунок 2.2 – Нормированный переходный процесс

Структура аппроксимирующего выражения для передаточной функции объекта может быть выбрана в общем случае в виде:

Коэффициент усиления объекта управления Kо можно найти по графику переходного процесса. Постоянные времени передаточной функции могут быть найдены методом площадей, геометрическим и методом Ротача.

2.3 Нахождение коэффициента усиления

Коэффициент усиления может быть определен из следующего соотношения:

Отсюда получаем, что .

2.4 Построение математической модели звена первого порядка геометрическим методом

Звено первого порядка с запаздыванием имеет следующий вид:

Для определения величины запаздывания и постоянной времени обратимся к графику переходного процесса (рисунок 2.1). Для нахождения постоянной времени необходимо провести прямую до пересечения с графиком процесса параллельно оси абсцисс на уровне 0.63kc (см. рисунок 2.3).

Рисунок 2.3 – Определение постоянной времени по переходному процессу

Постоянная времени T = 360.53 (с). . Построим переходный процесс для такого звена и посмотрим насколько он совпадает с экспериментальным.

Схема модели в MatLab представлена на рисунке 2.4.

Рисунок 2.4 – Схема модели

Полученный переходный процесс представлен на рисунке 2.5.

Рисунок 2.5 – Переходный процесс, полученный по передаточной функции

Таким образом, передаточная функция объекта в данном случае имеет следующий вид:

2.5 Построение модели звена второго порядка методом площадей

При q=1 и =0 получаем объект второго порядка. Рассчитаем постоянные времени T1 и T2 при помощи метода площадей:

Для определения параметров передаточной функции методом площадей необходимо построить графики функций:

1)

2)

Тогда можно определить площади под графиками данных функций (S1 и S2 соответственно). Результаты вычислений представлены ниже.

S1 =

309.8824

S2 =

5.9162e+004

Графики данных функций приведены на рисунках 2.6 и 2.7 соответственно.

Рисунок 2.6 – График функции

Рисунок 2.7 – График функции

Теперь необходимо проверить соотношение . Если , то метод площадей применять нельзя, необходимо использовать метод грубых площадей. В нашем случае (полный листинг m-файла приведен в приложении В). Значит, применим метод грубых площадей.

Для этого нужно найти точку перегиба графика переходного процесса. Точка перегиба имеет координаты: t = 90 c, , y(tп)=0.09.

Берем точку t правее точки перегиба (t>tп) воспользуемся формулой:

, где

In= , площадь кривой после точки перегиба (пределы интегрирования: от 90(tп) до 600()), причем, =k*(t), где (t)=1-h(t), следовательно:

Таким образом, реализуя данный алгоритм, получаем следующие результаты:

T1 =

237.2624

T2 =

72.6200

Transfer function:

514.3

---------------------------

1.723e004 s^2 + 309.9 s + 1

График переходного процесса для такого звена представлен на рисунке 2.8

Рисунок 2.8 – График переходного процесса для звена второго порядка, рассчитанного с помощью метода площадей

2.6 Построение математической модели звена второго порядка методом Ротача

Проведем в точке перегиба касательную, для определения интервала времени Т0, заключенного между точками пересечения этой касательной оси абсцисс и линии установившегося значения h переходной характеристики:

Рисунок 2.9 – Нормированный переходный процесс

Таким образом, запишем величины, являющиеся входными данными:

T0=526 tп=90, y(tп)=0,09.

Введем обозначение:

Так как , то возможна аппроксимация инерционным звеном второго порядка без запаздывания (т.е. q=1, =0), следовательно, получаем следующую модель:

Таким образом, запишем модель звена второго порядка без запаздывания:

или

Теперь построим переходный процесс для данной передаточной функции.

w=tf([514.3],[8396 478.66 1]);

step(w, 600)

grid on

Результат представлен на рисунке 2.10.

Рисунок 2.10 – График переходного процесса для звена второго порядка, рассчитанного методом Ротача

2.7 Выбор наилучшей аппроксимирующей модели

Для выбора лучшей аппроксимирующей модели объекта управления среди найденных моделей сравним теоретические и экспериментальный переходные процессы. Для оценки качества полученных передаточных функций, описывающих объект управления, вычислим оценку χ2 по формуле:

Проведенный расчет дает следующие результаты:

%Расчет погрешностей

k=514.3;

y_real=[24.44 60 93.33 125.5 154.44 180];

y1=[32 72 101 122 136 146];

y2=[31.1 73.3 106.67 131.11 148.89 160];

y3=[30 58.33 63.33 103.33 116.67 128.33];

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y1(i))^2;

end

x1=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y2(i))^2;

end

x2=sqrt(tmp)/k

tmp=0;

for i=1:6

tmp = tmp + (y_real(i)-y3(i))^2;

end

x3=sqrt(tmp)/k

x1 =

0.0818

x2 =

0.0571

x3 =

0.1445

x1 – соответствует оценке звена запаздывания; x2 – соответствует апериодическому звену второго порядка, рассчитанному методом площадей; x3 – соответствует апериодическому звену второго порядка, рассчитанному методом Ротача.

Так как наименьшая оценка χ2 получилась у апериодического звена второго порядка, рассчитанного интегральным методом, то это звено и возьмем в качестве модели нашей системы. Передаточная функция объекта управления имеет вид:

3 СИНТЕЗ РЕГУЛЯТОРА

3.1 Синтез регулятора методом ЛАЧХ

Для того чтобы система удовлетворяла заданным требованиям по точности и качеству (перерегулирование 5 %, время регулирования tP 420 с, коэффициент статической ошибки С0 = 0), необходимо в систему, структурная схема которой изображена на рисунке 3.1, ввести регулятор.


Рисунок 3.1 – Структурная схема замкнутой системы


Преобразуем структурную схему, представленную на рисунке 3.1, введем в систему регулятор как корректирующее звено последовательного типа:


Рисунок 3. 2 – Структурная схема замкнутой системы с регулятором

Найдем передаточную функцию неизменяемой части прямой цепи:

где WДТ=kД – передаточная функция датчика температуры Тд;

WИ=kИ – передаточная функция измерительного блока;

WО – передаточная функция объекта управления.

Передаточная функция прямой цепи (неизменяемой части системы):

Тогда коэффициент усиления неизменяемой части K:

Передаточная функция неизменяемой части прямой цепи будет иметь вид:

Передаточную функцию синтезируемого регулятора найдём методом логарифмических частотных характеристик. Для этого построим ЛАЧХ неизменяемой части прямой цепи исследуемой САУ:

Примем желаемую передаточную функцию в виде

.

Желаемый коэффициент усиления определяется из соотношения:

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее