123702 (Построение траектории Броуновского движения)

2016-07-31СтудИзба

Описание файла

Документ из архива "Построение траектории Броуновского движения", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "123702"

Текст из документа "123702"

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Брестский государственный университет имени А. С. Пушкина»

Математический факультет

Кафедра информатики и прикладной математики

Курсовая работа

ПОСТРОЕНИЕ ТРАЕКТОРИИ БРОУНОВСКОГОДВИЖЕНИЯ

Подготовила:

Кондратюк Анна Степановна,

студентка 3 курса специальности

«Математика. Информатика»

Руководитель: Черноокий

Александр Леонидович

Брест 2009

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. СЛУЧАЙНЫЕ ФРАКТАЛЫ

1.1 Снежинка Коха

1.2 Салфетка Серпинского

1.3 Броуновское движение

2. СУТЬ БРОУНОВСКОГО ДВИЖЕНИЯ

3. ОПРЕДЕЛЕНИЕ

4. ПРОГРАММИРОВАНИЕ НА DELPHI

4.1 Код программы «Броуновское движение, как хаотичное движение частиц»

4.2 Код программы «Построение траектории броуновское движение»

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Для того чтобы раскрыть суть броуновского движения необходимо иметь понятие о хаосе и фракталах. Ведь броуновское движение, яркий пример фрактала, который впервые наблюдал в 19 веке шотландский ботаник Роберт Браун. Он же в 1827 году должным образом описал наблюдаемый эффект.

Какими же инструментами располагает теория хаоса? В первую очередь это фракталы.

Мандельброт ввел в употребление термин фрактал, основываясь на теории фрактальной (дробной) размерности Хауодорфа предложенной в 1919 году. Он отыскал нишу для имевших дурную репутацию множеств Кантора, кривых Пеано, функций Вейерштрасса и их многочисленных разновидностей, которые считались нонсенсом. Он и его ученики открыли много новых фракталов, например, фрактальное броуновское движение

Траектории частиц броуновского движения, которым занимались Роберт Броун еще в 1828 году и Альберт Эйнштейн в 1905 году, представляют собой пример фрактальных кривых, хотя их математическое описание было дано только в 1923 году Норбертом Винером. В 1890 году Пеано сконструировал свою знаменитую кривую.

Но в тоже время, как это часто случается в так называемой новой математике, открытия опираются на работы великих математиков прошлого. Исаак Ньютон понимал это, говоря «Если я и видел дальше других, то только потому, что стоял на плечах гигантов».

Изучение фракталов и хаоса открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области чистой математики, именно поэтому, этот факт является целью написания данной работы. Здесь описывается суть броуновского движения и траектории, особенности открытия этого явления, определение (с точки зрения теории вероятности) и примеры программирования, что в свою очередь, говорит о возможности применения данного «хаоса» в различных приложениях.

1. СЛУЧАЙНЫЕ ФРАКТАЛЫ

Фрактальные объекты повсеместно встречаются в природе. Это модели снежинок, деревьев, кустов, листьев и тому подобных объектов. Однако фракталы, получаемые с помощью L-систем или СИФ, обладают одним явным недостатком, ограничивающим их применение для моделирования естественных объектов. Они детерминированы.

Построение этих фракталов не сводится к случайным возмущениям детерминированных фракталов. Напротив, случайный характер присущ им изначально, что связано со случайными процессами.

Основной моделью является фрактальное броуновское движение – случайный процесс, широко распространенный в природе.

Некоторые примеры фракталов:

1.1 Снежинка Коха

Снежинка Коха представляет собой линию бесконечной длины, ограничивающую конечную площадь, которая в 1.6 раза больше площади образующего ее треугольника.

Пример построения этого фрактала изображен ниже на рис.1.


Рис.1.Снежинка Коха

1.2 Салфетка Серпинского

Три первых шага в построении этого фрактала изображены на рис.2, а сам фрактал — на рис.3.

Число треугольных пар все меньшего и меньшего масштаба в нем бесконечно. Число черных треугольников в этом построении растет как 3n, где n — номер шага, а длина их стороны уменьшается как 2–n. Легко показать, что площадь белых пятен равна площади исходного треугольника.


Рис.2 Построение салфетки Серпинского


Рис.3. Салфетка Серпинского

1.3 Броуновское движение

Рассмотренные выше примеры фракталов относятся к так называемым точным фракталам или детерминистическим. Они все построены по вполне определенному геометрическому правилу. Помимо точных фракталов, существуют еще так называемые случайные фракталы. В расположении их элементов есть некоторая доля случайности. Простейшим случайным фракталом является траектория частицы, совершающей броуновское движение — рис.4. И хотя сама траектория имеет очень сложный извилистый характер, определить ее фрактальную размерность очень просто. Для этого заметим, что если частица продиффундировала на расстояние R, то среднее число "шагов", которое она сделала, где l — характерная длина одного шага.

Поэтому:




Рис. 4. Траектория движения броуновской частицы.

Это значит, что характерный размер диффузионной траектории на заданной площади пропорционален величине этой площади. То есть траектория на плоскости является достаточно густой. Это, впрочем, не означает конечности площади, заметаемой самой диффузионной кривой, из-за множества самопересечений. Можно показать, что для двумерного броуновского движения вероятность возвращения в любую, сколь угодно малую окрестность произвольно выбранной точки, равна 1. В случае же диффузии в трехмерном пространстве траектория броуновской частицы является, напротив, очень рыхлой (ее фрактальная размерность по-прежнему равна 2) и не заполняет всего предоставленного ей объема. В этом случае вероятность возврата оказывается меньше единицы.

2. СУТЬ БРОУНОВСКОГО ДВИЖЕНИЯ

Начало исследования броуновского движения датируется 1827 годом, когда шотландский ботаник Роберт Броун обнаружил, что мелкие частицы, взвешенные в жидкости, совершают беспорядочное непрерывное движение, которое было названо в честь своего открывателя. В 1905 году Альберт Эйнштейн объяснил это движение хаотическими столкновениями с молекулами окружающей среды.

Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».

Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».

Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.

Норберт Винер в 1923 году построил первую удовлетворительную с математической точки зрения модель выборочных реализаций и доказал их «почти наверное» (на языке теории вероятностей) непрерывность.

Простейшей дискретной аппроксимацией броуновского движения служит случайное одномерное блуждание. В этом случае частица первоначально располагается в точке х0 = 0 на прямой. Частица совершает единичный шаг вправо или влево в зависимости от случайного выбора, например, бросания монеты. Случайное блуждание происходит итеративно. Для каждого п = 1,2,3,….положим, что

хn = хn-1 ± 1.

Более точным приближением к реальному броуновскому движению является замена шагов ±1 случайными величинами gп, имеющими гауссовское, или нормальное распределение. После первого шага частица находится в положении 1= 0 + g1, а после n шагов в положении

.

На рис.5. изображена типичная реализация гауссовского случайного блуждания.


Рис.5. График гауссовского случайного блуждания

Случайная величина X называется гауссовской, или нормальной с математическим ожиданием µ и дисперсией σ2, если она распределена, но закону:

то есть её плотность вероятности f(x) имеет вид:

.

График y=f(x) напоминает колокол рис.6. В наших приложениях математическое ожидание обычно равно нулю.

Гауссовское случайное блуждание легко реализуется на компьютере. Единственная сложность― необходим генератор гауссовских случайных чисел. Если имеется генератор, равномерно распределённый на отрезке [0,1] случайных чисел, то вполне приемлемое приближение можно получить, используя формулу:

,

Можно использовать и более общую формулу:

,

0,8

0,6

0,4

0,2


0

-0,2

-0,4

-0,6

-0,8

-4

-3

-2

-1

0

1

2

3

4

Рис.6. Нормированная гауссовская кривая

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее