14435-1 (O Л. В. Канторовиче и линейном программировании), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "O Л. В. Канторовиче и линейном программировании", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "14435-1"

Текст 3 страницы из документа "14435-1"

Исторически первыми связями теории Л.В. были связи с теорией наилучшего приближения и, в частности, с работами Крейна по L-проблеме моментов. М.Г.Крейн одним из первых обратил внимание на это. Реальные последствия состояли в постепенном осознании того, что методы решения обеих задач по существу схожи. Первый метод решения этих задач восходит еще к Фурье. Позже, в 30-40-х гг. нашего столетия, были выполнены важные работы Моцкиным и украинской школой М.Г.Крейна (в частности, С.И.Зуховицким, Е.Я.Ремезом и др). Однако метод разрешающих множителей и симплекс-метод были новыми для теории наилучшего приближения. Особенно важной с принципиальной точки зрения была сама трактовка задачи чебышевского приближения как полубесконечномерной задачи линейного программирования. Бесконечномерное программирование было также предметом нескольких работ моих учеников на мат-мехе ЛГУ (М.М.Рубинов, В.Темельт) и математиков в Москве (Е.Гольштейн и др).

Теория двойственности линейных пространств с конусом дает естественный язык для задач линейного программирования в пространствах произвольной размерности. Парадоксально, что это уловил Н.Бурбаки, далекий от каких-либо приложений: в своем 5-м томе "Элементов математики", - куда как абстрактный опус!, - если внимательно приглядеться, то в упражнениях можно найти даже теорему об альтернативах для линейных неравенств и ряд фактов, близких к теоремам двойственности линейного программирования. Это и естественно. Теорема Хана-Банаха и теоремы линейной отделимости - фундаментальные теоремы классического линейного функционального анализа - есть чистейший выпуклый геометрический анализ. То же относится и к общей теории двойственности линейных пространств.

Классическая теория линейных неравенств Г.Минковского - Г.Вейля в современной форме появилась в работе Г.Вейля 30-х гг. чуть раньше работ Л.В. - эта связь особенно прозрачна. Теоремы об альтернативах, леммы Фаркаша и т.д., двойственность Фенхеля-Юнга в теории выпуклых функций и множеств - все это объединилось с теорией линейного программирования уже в 50-х гг. Однако, заслуга Л.В., по-видимому, не сразу узнавшего обо всех этих связях, в том, что он нашел единый подход, базирующийся на идеях функционального анализа и вскрывающий идейную суть вопроса. Это одновременно давало и базу для численных методов его решения. Не преувеличивая, можно сказать, что функциональный анализ стал фундаментом всей математической экономики. Огромное число задач выпуклой геометрии и анализа (от теоремы Ляпунова о выпуклости образа до выпуклости в отображении моментов) также связаны с этими идями и их обобщениями.

Ко всему этому примыкают и многие последующие работы по теории линейным неравенствам (Черников, Фан Цзы и др.), по выпуклой геометрии и др, авторы которых не всегда знали о предшествующих результатах; нельзя и сейчас сказать, что весь этот цикл работ подытожен в надлежащем виде.

Б) Линейное программмирование и дискретная математика.

Однако линейное программирование имеет серьезные связи с дискретной математикой и комбинаторикой. Более точно, некоторые задачи линейного программирования являются линеаризацией комбинаторных задач. Примеры: задача о назначениях и теорема Биркгофа-фон Неймана, теорема Форда-Фулкерсона. Эта сторона теории не была замечена у нас сразу и пришла к нам из западной литературы позже. Основную задачу теории матричных игр с нулевой суммой (а именно, теорему о минимаксе) блестяще связал с линейным программированием еще фон Нейман, см. воспоминания Данцига, цитированные в статье А.М.Вершика, А.Н.Колмогорова и Я.Г.Синая "Джон фон Нейман" (Фон Нейман. "Избранные труды по функциональному анализу, т.1" М. "Наука",1987), где Данциг пишет о поразившем его разговоре с фон Нейманом, в котором тот за час изложил связь теории двойственности и теорем о матричных играх и наметил метод решения этих задач.

Эта связь была освоена не сразу, -- я помню, что ленинградские специалисты по теории игр первое время не принимали в расчет, что решение матричной игры с нулевой суммой есть задача линейного программирования, и, несомненно красивый, метод решения игр, принадлежащий Дж. Робинсон, считался чуть ли не единственным численным методом нахождения значения игры. В итоговом доказательстве теоремы фон Неймана о минимаксе (первое доказательство было топологическим и использовало теорему Брауэа) фактически содержалась теория двойственности. Позже эквивалентость игровой задачи и линейного программирования широко использовалась.

Акценты на связь с дискретной математикой и комбинаторикой превалируют в большинстве зарубежных работ первых лет по линейному программированию, в то время как в отечественных работах в первое время более подчеркивалась связь с функциональным и выпуклым анализом и развивались численные методы.

В связи с линейным и выпуклым программированием на первый план из комбинаторных теорий выступает комбинаторная геометрия выпуклых и целочисленных многогранников и комбинаторика симметрической группы. Важными работами первого периода по комбинаторике многогранников была книга Грюнбаума, и статьи Кли и др, а в комбинаторике - работы Дж. Рота и Р.Стенли. Одновременно возникли близкие темы в теории особенностей (многогранники Ньютона), алгебраической геометрии (торические многообразия и целочисленные многогранники) и др. А позже открылись обширные связи с симметрической группой, комбинаторной теорией диаграмм Юнга - одной из основных тем "новой комбинаторики", - а также посетами и матроидами. Интересно, что почти одновременно (и независимо) к ряду близких задач комбинаторики пришел И.М.Гельфанд (матроиды, клетки Шуберта, вторичные многогранники), назвавший комбинаторику математикой ХХI века. Сейчас новые комбинаторные задачи являются ключевыми в разнообразных математических проблемах.

Мой интерес к к линейному программированию в первые годы возник совершенно независимо от моих математических пристрастий тех лет и, в частности, не только потому, что я учился у Л.В. функциональному анализу и слушал его первые захватывающие рассказы о линейном программировании и его применении в экономике. В тот момент (1956-58 гг). это был скорее практический, чем теоретический интерес.

Дело в том, что отказавшись после окончания университета по некоторым причинам от аспирантуры, я работал в военно-морском ВЦ, и заинтересовался задачей многомерного наилучшего приближения как прикладник. Одной из моих задач в этом ВЦ было представление таблиц стрельбы в ЭВМ, и я предложил аппроксимировать их вместо того, чтобы хранить в памяти ЭВМ. Я сформулировал некоторое обобщение задачи о наилучшем приближении, а именно, о кусочно полиномиальном наилучшем приближении (ни о каких сплайнах тогда нам известно не было) для функций нескольких переменных. Позже, когда я уже стал работать в университете, в 60-х гг. этой задачей занимались мои первые дипломанты. Еще позже была написана подробная статья об этом.

Постепенно мой интерес к задаче о наилучшей аппроксимации превратился в интерес к самому методу, позволяющему ее решить, - одним из них и был метод линейного программирования. Г.П.Акилов посоветовал поговорить по этому поводу с Г.Ш.Рубинштейном. Во время наших бесед Г.Ш. дополнял доклады Л.В. рассказами о близких работах других математиков, - несомненно, Г.Ш. был тогда одним из лучших знатоков линейного программирования и всего этого круга идей Л.В. -- о работах американцев (симплекс-методе) мы узнали несколько позже. Основным для нас был "метод разрешающих множителей". Он укладывался как частный случай в то, что у нас называлось симплекс-методом, но наше понимание было шире американского, -- классический симплекс-метод Данцига есть также частный случай этого, более общего, класса методов. К сожалению, как часто бывает, русская терминология не была достаточно продумана и зафиксирована и слова "симплекс-метод" допускают массу различных толкований.

Школа численных методов линейного программирования в СССР была исключительно сильной, и в этом безусловная заслуга Л.В. и двух его основных помощников первой поколения -- В.А.Залгаллера и Г.Ш.Рубинштейна, а позже И.В.Романовского и его группы, В.Л.Булавского, в Москве -- Д.Б.Юдина и Е.Г.Гольштейна и др. В последующем с развитием вычислительной и программистской техники численное решение любых задач разумной размерности стало доступным.

В) Метрика Канторовича.

Однажды весной 1957 г. Г.Ш.Рубинштейн рассказал мне, что он наконец понял, как можно использовать теорему Л.В. о задаче Монжа (теперь ее называют задачей Монжа - Канторовича), доказанную им в заметке ДАН 1942 г. - а именно, как метрику Канторовича, т.е. оптимальное значение целевого функционала в транспортной задаче, использовать для введения нормы в пространстве мер и как критерий Л.В. становится теоремой двойственности с пространством функций Липшица. По сути дела, это было важным методическим замечанием, так как сама метрика уже была описана в заметке Л.В. Но именно эта работа Л.В. и Г.Ш., появившаяся в Вестнике ЛГУ в 1958 г., в выпуске, посвященном Г.М.Фихтенгольцу, содержала общую теорию знаменитой теперь метрики, назывемой иногда метрикой Канторовича-Рубинштейна, или транспортной.

Кстати, в том же номере была опубликована и моя первая работа совместно с моим первым руководителем Г.П.Акиловым, посвященная новому определению распределений Шварца, но в которой также в качестве одного из примеров рассматривалась эта, только что появившаяся, метрика. В той же работе Л.В. и Г.Ш.-- это обычно вспоминается реже, - был дан критерий оптимальности первозок в двойственных терминах -- функций Липшица или потенциалов.

С тех пор я превратился в постоянного пропагандиста этой замечательной метрики, и убедил очень многих математиков наших и зарубежных, в приоритете Л.В. и в важности этой работы. Она переоткрывалась огромное число раз и потому имеет очень много названий (метрика Вассерштейна, Орнштейна и т.д., не знавших о работе Л.В.) а сам метод ее введения известен как спаривание (coupling), как метода фиксированных маргинальных мер и т.д. Ее применения обширны и в самой математике, и в статфизике, и в математической статистике, в эргодической теории и в других приложениях. О ней написаны книги, которые далеко не исчерпывают всех ее сторон. Весьма близки к ней метрика Леви - Прохорова - Скорохода, популярная в теории вероятностей. Возможность дальнейшего обобщения этой метрики для широкого круга задач оптимизации была понята несколько позже, этому посвящены одна моя работа в "Успехах" 1970 г. и ее развитие в статье с М.М.Рубиновым.

Одновременно я применил эту метрику в 1970 для одной из важных задач теории меры и эргодческой теории (в теории убывающих последовтельностей измеримых разбиений). Там понадобилась дикая на первый взгляд беконечная итерация этой метрики ("башня мер"). Приблизительно в то же время Д.Орнштейн переоткрыл и ввел ее в эргодичскую теорию по другому поводу (метрика Орнштейна).

История этой метрики и всего, что относится к ней -- прекрасный пример того, как прикладная (в данном случае -- транспортная) задача инициирует введение исключительно полезного чисто математического понятия.

Г) Связи с вариационным исчисленим и множителями Лагранжа.

Линейное и выпуклое программирование естественно обобщало теорию множителей Лагранжа на нерегулярные задачи (задачи на многогранных областях или, как бы мы сказали сейчас, на многообразиях с углами). То, что разрешающие множители были обобщением множителей Лагранжа, Л.В. отмечал с самого начала. Неклассические множители появлялись и в других областях, в первую очередь в теории оптимального управления в школе Понтрягина. Эта теория также обобщала условные вариационные задачи на случай нерегулярных ограничений, и потому ее следует сравнивать с задачами (вообще говоря, невыпуклого, но в существенных случаях - выпуклого) бесконечномерного программирования. Эта связь прояснилась не сразу.

Нужно сказать, что в эстетическом отношении теория Понтрягина уступала теории Л.В., хотя первая по сути более сложна (только из-за изначальной бесконечномерности задач). О связи линейного и выпуклого программирования с оптимальным управлением писалось немало. Однако по ряду причин эта связь не была доведена до достаточно глубокого уровня.

В первую очередь это связано с недостаточно инвариантной формой, в которой рассматриваются обычно задачи оптимального управления. Промежуточное положение между классическим вариационным исчислением и оптимальным управлением, ближе к геометрии и теории алгебр Ли, занимают неголономные задачи. В них также наличествует неклассичность ограничений, как в выпуклом программировании и оптимальном управлении, но неклассичность другого (гладкого) типа.

Я занялся ими в середине 60-х годов, когда стал обдумывать популярные тогда работы по инвариантным формулировкам механики (Арнольд, Годбийон, Марсден и др.). Увидев в неголономной механике -- падчерице классической механики -- нетривиальную оптимизационную задачу, я понял, как ее поставить в современной форме. В те годы у нас был молодежный образовательный семинар в ЛОМИ -- по дифференциальной геометрии, теории представлений, группам Ли и всему остальному (Л.Д.Фаддеев, Б.Б.Венков, я и др.).

Как-то раз случайно выяснилось, что и Л.Д. тоже обдумывал неголономную механику, и мы решили вместе разобраться во всем полностью. Мы написали сначала краткую, в ДАН, а потом и большую статью об инвариантной форме лагранжевой и, в частности, неголономной механики. Эти работы обильно цитируются до сих пор, в них дан словарь соответствия между терминами дифференциальной геометрии и понятиями классической механики. Сейчас эта тематика стала модной, она является замечательным промежуточным звеном между классическим и неклассическим вариационным исчислением. В нем множители Лагранжа предстают в еще одной новой форме - как переменные, отвечающие ограничениям и следствиям (скобкам Ли) всех порядков. Здесь также невозможно не вспомнить о разрешающих множителях Л.В.

Д) Линейные модели и марковские процессы.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее