179295 (Статистические методы анализа качества), страница 7

2016-07-31СтудИзба

Описание файла

Документ из архива "Статистические методы анализа качества", который расположен в категории "". Всё это находится в предмете "экономика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "экономика" в общих файлах.

Онлайн просмотр документа "179295"

Текст 7 страницы из документа "179295"

Для построения гистограммы на оси абсцисс отмечают границы интервалов - точки а,, ..., ai-1 . Над каждым интервалом строится прямоугольник площадью п, (очевидно, если длина каждого интервала h, то высота этого прямоугольника n/h ). Получившаяся ступенчатая фигура называется гистограммой частот. При этом площадь гистограммы частот равна объему выборки п. Отрезок [а, аn,] назовем основанием гистограммы.

Аналогично строится и гистограмма относительных частот - ступенчатая фигура, состоящая из прямоугольников, площади которых равны n/h, то есть общая площадь гистограммы относительных частот равна 1.

6.2 Числовые характеристики случайных величин

Поведение любой случайной величины определяется ее распределением, средним значением и разбросом относительно этого среднего значения.

Средними значениями случайной величины являются ее

• математическое ожидание - среднее арифметическое всех значений случайной величины;

• мода - значение случайной величины, которое встречается чаще всего, то есть имеет наибольшую частоту;

• медиана - такое значение случайной величины, которое оказывается точно в середине упорядоченного вариационного ряда, то есть, если все

зафиксированные значения случайной величины расположить в порядке возрастания, то слева и справа от медианы окажется одинаковое число точек. При этом, если число наблюдений нечетно (n=2k+l), то в качестве медианы берут среднюю точку хk-1,, а если число наблюдений четно (n=2k), то медиана - это центр среднего интервала (хi.хk-1,), то есть ;X=(xi+Xk+1)/2.

Разброс случайной величины относительно средних значений характеризуется дисперсией или средним квадратическим отклонением (с.к.о.) - мерой рассеяния распределения относительно математического ожидания. При этом с.к.о. - это корень квадратный из дисперсии. Наибольший разброс случайной величины определяется размахом выборки, то есть величиной интервала, в который попадают все возможные значения случайной величины.

В математической статистике говорят о статистических оценках параметров распределения. Статистические оценки бывают точечные (определяемые одним числом) и интервальные (определяемые двумя числами -концами интервала). Точечные оценки дают представление о величине соответствующего параметра, а интервальные характеризуют точность и достоверность оценки.

Предположим, что в результате наблюдений получены n значений случайной величины Х : x1; , ... , xn . Для вычисления точечных оценок параметров распределения пользуются формулами:

среднее квадратичное отклонение s = v/5 ; (6.2.8)

Пример 6.2. Пусть в результате наблюдений получены следующие значения случайной величины X: (5; 6; 3; 6; 4; 5; 3; 7; 6;7;5;6).

Упорядоченный вариационный ряд: 3, 3,4, 5, 5, 5, 6, 6, 6, 6, 7, 7.

Таблица частот статистическое распределение:

X 3 4 5 6 7

2 1 3 4 2

Вычислим все числовые характеристики случайной величины хmin = 3; xmax = 7; медиана 5- x=(X6+X7)/2 = (5 + 6)/2 = 5,5;

мода Х = 6 , так как это значение встречалось чаще всего (n = 4);

выборочное среднее х = (2 3+1 4+3 5+4 6+2 7)/12 = 5,25 ;

размах R = 7 - 3 = 4 ;

выборочная дисперсия .S= D =(1/11) (2(3 - 5,25)2+ 1(4-5,25)2+ + 3 (5 - 5.25)2 + 4 (6 - 5,25)2 +2 (7 - 5,25)2) = 15/11 = 1,84 ;

среднее квадратичное отклонением s = 1,36 .

Замечание. Современная вычислительная техника, используя специальные пакеты прикладных программ, позволяет получить значения выборочной средней и дисперсии сразу же после введения данных выборки (наблюдаемых значений исследуемой случайной величины)

6.3 Типовые теоретические распределения случайных величин

Характер поведения случайной величины определяется ее распределением. Зная тип распределения случайной величины и его числовые характеристики, можно прогнозировать, какие значения будет принимать случайная величина в результате наблюдений, то есть можно делать определенные выводы обо всей генеральной совокупности.

Наиболее часто встречается нормальное (гауссовское) распределение. Это связано с тем, что разброс характеристик качества обусловлен суммой большого числа независимых ошибок, вызванных различными факторами, а согласно центральной предельной теореме Ляпунова в этом случае случайная величина имеет распределение, близкое к нормальному.

Нормальное распределение описывает непрерывную случайную величину, поэтому его задают плотностью вероятности/С.^. Плотность вероятности нормального распределения имеет вид:

Параметр и определяет точку максимума, через которую проходит ось симметрии графика функции, и указывает среднее арифметическое значение случайной величины, s показывает разброс распределения относительно среднего значения, то есть определяет "ширину" колокола (расстояние от оси симметрии до точки перегиба графика

Для удобства подсчета вероятностей любое нормальное распределение с параметрами а и σ преобразуют к стандартному (нормированному) нормальному распределению, параметры которого а = 0, s = 1, то есть плотность

Значения функции f(х) можно найти в справочных таблицах или получить, используя готовые компьютерные программы.

Другим часто встречающимся в технике распределением непрерывной случайной величины является закон Рэлея. Он описывает распределение погрешностей формы и расположения поверхностей (биение, эксцентриситет, непараллельность, неперпендикулярность и т.п.), когда эти погрешности определяются радиусом кругового рассеяния н а плоскости.

Если на плоскости задана система координат Оху, то точка с координатами (х,у; отстоит от начала координат на расстояние координат х и у - нормально распределенная случайная величина, то г - случайная величина, имеющая распределение Рэлея. Плотность вероятности этого распределения:

Для дискретных случайных величин наиболее распространенным является биномиальное распределение. Биномиальный закон распределения описывает вероятность того, что в выборке объема п некоторый признак встретится ровно k раз. Точнее, пусть проводится п независимых испытаний ("опытов"), в каждом из которых признак может проявиться ("успех опыта") с вероятностью р. Рассмотрим случайную величину Х - число "успехов" в данной серии испытаний. Это дискретная случайная величина, принимающая значения О, 1,... , п, причем вероятность того, что Х примет значение, равное k, то есть что ровно в k испытаниях будет зафиксирован исследуемый признак, вычисляется по формуле

Формула (6.3.13) называется формулой Бернулли, а закон распределения случайной величины X, задаваемый этой формулой, называется биномиальным, Параметрами биномиального распределения являются число опытов n и вероятность "успеха" р. Но так как нас интересуют среднее значение и разброс случайной величины относительно своего среднего значения, то отметим, что для биномиального распределения математическое ожидание т → up . а дисперсия →прц .

Биномиальный закон описывает в самой общей форме осуществление признака в повторной выборке (в частности, появление несоответствий).

Например, пусть в партии из N деталей ровно М имеют внешний дефект (неравномерность окраски). При контроле из партии извлекается деталь, фиксируется наличие либо отсутствие дефекта, после чего деталь извращается обратно. Если эти действия проделаны n раз, то вероятность того, что при этом k раз будет зарегистрирован дефект, вычисляется по формуле:

Если же извлеченная деталь не возвращается обратно (или все п деталей вынимаются одновременно), то вероятность того, что среди вынутых п деталей окажется ровно k с дефектом равна

В этом случае случайная величина Х - количество несоответствующих деталей в выборке задается гипергеометрическим законом распределения. Этот закон описывает осуществление признака в бесповторной выборке.

Когда N очень велико по сравнению с п (то есть объем генеральной совокупности по крайней мере на два порядка больше объема выборки), то несущественно, какая проводится выборка - бесповторная или повторная, ТО есть в этом случае вместо формулы (6.3.16) можно использовать формулу (6.3.15).

При больших значениях п формула Бернулли (6.3.13) заменяется формулой

которая фактически совпадает с формулой (6.3.1), то есть с нормальным законом распределения, параметры которого а = пр. s = npq.

Для распределения Пуассона математическое ожидание равно l,Дисперсия также равна l.

На рисунке 6.4 представлены два биномиальных распределения P^(k). У одного п = 30; р = 0,3 - оно близко к нормальному распределению с математическим ожиданием т, = пр =-- 9. У другого п = 30;р = 0,05 - оно близко к распределению Пуассона с математическим ожиданием mk = пр = 1,5.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Статистические методы повышения качества (Пер. с англ./ Под ред. С. Кумэ).-М.: Финансы и статистика, 1990.-304с.

2. Статистическое управление процессами (SPC). Руководство. Пер. с англ. (с дополн.). - Н.Новгород: АО НИЦ КД, СМЦ «Приоритет», 1997г.

3. Статистический контроль качества продукции на основе принципа распределения приоритетов/В.А. Лапидус, М.И. Розно, А.В. Глазунов и др.-ВЙ.: Финансы и статистика, 1991 .-224с.

4. Миттаг Х.-И.. Ринне X. Статистические методы обеспечения качества М.: Машиностроение, 1995.-616с.

5. ГОСТ Р 50779.0-95 Статистические методы. Основные положения.

6. ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования.

7. ГОСТ Р 50779.50-95 Статистические методы. Приемочный контроль качества по количественному признаку. Общие требования.

8. ГОСТ Р 50779.51-95 Статистические методы. Непрерывный приемочный контроль качества по альтернативному признаку.

9. ГОСТ Р 50779.52-95 Статистические методы. Приемочный контроль качества по альтернативному признаку.

10. ИСО 9000-ИСО 9004. ИСО 8402. Управление качеством продукции ( пер. с англ.).-М.: Изд-во стандартов, 1988.-96с.

11. ИСО 9000. Международные стандарты.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее