TRANSF~3 (Лекции по линейной алгебре (МГИЕМ, ФПМ))

2016-07-31СтудИзба

Описание файла

Документ из архива "Лекции по линейной алгебре (МГИЕМ, ФПМ)", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "TRANSF~3"

Текст из документа "TRANSF~3"

ГРУППЫ ПРЕОБРАЗОВАНИЙ

(продолжение)

  1. Группы преобразований

Пусть X некоторое множество, Sym(X) - множество всех взаимно однозначных отображений X на себя. Элементы называются преобразованиями множества X.. Композиция двух таких преобразований будет называться их произведением. Таким образом , (fg)(x) = f(g(x)). Отметим, что это произведение ассоциативно: (fg)h = f(gh).Для каждого преобразования f имеется обратное преобразование . Непустое множество G преобразований X называется группой преобразований, если:

Заметим, что каждая группа преобразований G содержит тождественное преобразование i. В самом деле, пусть - любой элемент. Тогда и значит . Число элементов в G, если оно конечно, называется порядком группы преобразований. Если H и G две группы преобразований множества X и , то H называется подгруппой G.

Приведем два основных примера групп преобразований. Пусть - любое подмножество и любая группа преобразований.

  1. Множество всех таких преобразований , что f(y) =y образует подгруппу (сиационарные на Y преобразования).

  2. Множество всех таких преобразований , что образует подгруппу (G - симметрии множества Y).

Приведем теперь более конкретные примеры.

  1. Если X ={ 1, 2, ... , n } то группа Sym(X) обозначается и состоит из всех подстановок степени n . Эта группа состоит из n! элементов.

  2. Множество всех перемещений n - мерного пространства образует группу преобразований . - подгруппа.

  3. Пусть некоторая точка (начало координат). Группа состоит из всех перемещений сохраняющих начало координат. Как нам известно, такие перемещения можно отождествить с ортогональными операторами в . Эта группа называется группой ортогональных преобразований n - мерного пространства и обозначается . Каждое перемещение имеет определитель ±1 . Множество перемещений с определителем 1 образует группу, которая обозначается (специальная группа). Аналогичный смысл имеет обозначение .

  4. Пусть Y - прямоугольник (не квадрат!) на плоскости . Группа состоит из четырех преобразований: тождественного, поворота на 180° и двух отражений относительно взаимно перпендикулярных осей. Стандартное обозначение этой группы . Аналогично, группа из двух элементов и обозначается .

  5. Пусть Y - правильный n - угольник ( n = 3, 4, ... ) на плоскости. Группа состоящая из 2n элементов обозначается , а - и состоит из n элементов. Первая из них называется диэдральной, а вторая - циклической . Смысл этих названий будет пояснен в дальнейшем. По определению будем считать, что группа состоит из одного тождественного перемещения i.

  6. Пусть Y - фигура, образованная бесконечной в обе стороны последовательностью букв Г: ...Г Г Г Г ...Если h - вектор, начало которого совпадает с «углом» одной из этих букв, а конец с «углом» соседней, то группа состоит из переносов на векторы равные nh , где n = 0, ±1, ±2, ... . Эта группа называется бесконечной циклической и обозначается .

  7. Орбиты и стационарные подгруппы.

    Пусть G группа преобразований множества X, некоторая точка. Множество называется орбитой точки x. Подгруппа называется стационарной подгруппой точки x. Приведем некоторые примеры.

    1. Рассмотрим группу G = вращений плоскости вокруг некоторой точки P. Если x некоторая точка плоскости отличная от P, то ее орбита представляет собой окружность с центром P радиусом d(x , P). Орбита же точки P состоит из этой единственной точки. Стационарная подгруппа в первом случае тривиальна (то есть состоит из одного тождественного перемещения), а во втором совпадает со всей группой .

    2. Возьмем группу G = симметрий правильного треугольника ABC на плоскости (см. пример 5 выше). Пусть оси симметрии треугольника, пересекающиеся в центре треугольника точке P. Если точка x плоскости не лежит ни на одной из осей симметрии, то ее орбита состоит из 6 точек, являющихся вершинами шестиугольника со сторонами перпендикулярными этим осям. Стационарная подгруппа в этом случае тривиальна. Если x лежит на одной из осей, но не совпадает с P, то - правильный треугольник с вершинами на осях симметрии, а группа St(x) совпадает с . Наконец, состоит из единственной точки P, а St(P) совпадает со всей группой .

3.Пусть X ={ 1, 2, ... , n }, G = . Орбита любой точки совпадает со всем множеством X. В этом случае группа называется транзитивной на множестве.

Установим теперь некоторые общие свойства орбит и стационарных подгрупп.

Теорема 8

Пусть G группа преобразований множества X. Тогда:

Доказательство.

Как отмечалось выше, тождественное преобразование i содержится в любой группе преобразований. Следовательно, i(x) = x и первое утверждение доказано. Если , то y = g(x) для некоторого g . Если любой элемент, то (y) = и потому . Но поскольку x = (y) и значит справедливо и обратное включение. Тем самым доказано и второе утверждение. Наконец, если и z =g(y) = (x), то y = (x), то есть , что доказывает третье утверждение.

Следствие.

Любая группа G преобразований множества X задает разбиение D этого множества на непересекающиеся непустые подмножества - орбиты : .

Теорема 9.

Пусть, как и выше G группа преобразований множества X. Если x = g(y), то отображение является взаимно однозначным соответствием между подгруппами St(x) и St(y).

Доказательство.

Поскольку , отображение j имеет обратное: и потому взаимно однозначно на множестве X. Если то есть h(x) = x, то j(h)(y) = = (h(g(y))) = (h(x)) = (x) = y. Следовательно, . Аналогично, , что и требовалось.

Следствие.

Если x и y точки одной орбиты и St(x) конечная группа из k элементов, то и St(y) - конечная группа из k элементов. Число k называется порядком стабилизатора орбиты.

Теорема 10.

Пусть G конечная группа преобразований множества X . Число элементов орбиты равно , где - число преобразований в G, а k - порядок стабилизатора орбиты.

Доказательство.

Пусть y любой элемент, y = g(x). Если , то (gh)(x) = g(h(x)) = g(x) = y. Обратно, если (gh)(x) = y, то h(x) = (y) = x и, следовательно, . Итак, количество элементов G, переводящих x в y равно порядку стабилизатора орбиты k. Следовательно, общее число элементов G равно числу элементов орбиты, умноженному на k, что и требовалось доказать.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее