matan3 (Лекции (1-18) по мат. анализу 1 семестр)

2016-07-31СтудИзба

Описание файла

Документ из архива "Лекции (1-18) по мат. анализу 1 семестр", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "matan3"

Текст из документа "matan3"

Л

По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик

van_mo_mail@mtu-net.ru или на сотовый:

8-901-7271056 спросить Ваню

екция №10

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 17 октября 2000 г.

Тема: «Коши, производные»

Теорема: (Коши о промежуточных значениях)

Пусть функция y=f(x) непрерывна на отрезке [a,b] и на концах принимает значение разные значения.

f(a)=A f(b)=B AB. Тогда С лежащею между А и В,  х0(a,b): f(x0)=C. Другими словами нет точек которые не являются значением отрезка.

Д оказательство: A

Эта функция непрерывна на отрезке [a,b]

(a)=f(a)-c=A-C<0 по теореме Коши №11  x0(a,b):(x0), то естьf(x0)-C=0 f(x0)=c

(b)=f(b)-c=B-C>0

Замечание: Условие непрерывности нельзя отбросить

[c,d][A,B]

[c,d)E(f)

Теорема: (о существование и непрерывности обратной функции) «Без доказательства»

П усть на множестве D задана непрерывная возрастающая или убывающая функция y=f(x). Тогда на множестве её значений Е определена обратная ей функция x=g(y), которая непрерывна и возрастает или убывает на множестве Е.

Производная функции. ∆Х

П усть y=f(x) определена в O(x0)

x=x-x0 – называется приращением аргумента в т х0 Х

Х Х

Разность значений функций.

∆y=∆f(x0)=f(x)-f(x0)=f(x0+∆x)-f(x0) – называется приращением функции в точки х0. Через эти обозначения можно определить непрерывность функций:

f(x) – неопределенна в точки х0, если она определена в O(x0) и lim ∆y=0

x0

lim[f(x)-f(x0)]=lim[f(x)-f(x0)]0 lim[f(x)]=f(x0)]

x-x0 xx xx

Определение непрерывной функции в точки приращения:

f(x) – неопределенна в точки х0, если она определена в O(x0) и lim ∆y=0

x0

Определение: (производной функции)

Пусть y=f(x) определена в О(х0) и  lim[∆y/∆x]<, тогда этот предел называется производной функции f(x) в

х0

точке х0.

Обозначения:

f’(x0), y’(x0), dy/dx, df(x0)/dx=df(x)/d(x)

То есть f’(x0) по определению = lim[f(x)-f(x0)]/(x-x0)lim∆y/∆xdy/dx

x0 x0

Физический смысл производной.

Рассмотрим прямолинейное движение материальной точки:

S

x

x0 x

t0 t

s(t)x(t); ∆s=∆x(t)=x(t)-x(t0)

s/∆t=[x(t)-x(t0)]/[t-t0]=vcp. Если ∆t0

тогда vcpvмнг

lim ∆s/∆t=lim[x(t)-x(t0)]/[t-t0]=vмнг

∆t0 tt

Геометрический смысл производной.

y’(x0)=lim∆y/∆x – производная функции у(х) и в точке х0.

х0

∆y=y(x0+∆x)-y(x0)

y’(x0)=tgкас где кас – угол наклона в точке (х0;y(x0)) к оси

Основные теоремы о производной.

Теорема: Пусть  f’(x) и g’(x), тогда  [f(x)+g(x)]’= f’(x)+g’(x)

Доказательство: следует непосредственно из определения производной и свойств предела суммы.

Теорема: (связи между непрерывностью функции и существование производной)

Пусть  f’(x) функция f(x) – непрерывна.

Доказательство: Пусть f(x) определена в О(х0) и lim[f(x)-f(x0)]/(x-x0)=f’(x0)< [f(x)-f(x0)]/(x-x0)=f(x0)+(x-x0)2

xx

[f(x)-f(x0)]=f’(x0)(x-x0)+(x-x0)(x-x0) при хх0

lin[f(x)-f(x0)]=limf’(x0)(x-x0)+lim(x-x0)(x-x0)=0+0=0linf(x)=f(x0) то есть f(x) непрерывна в точки х0

xx xx xx xx

Замечание: обратное утверждение неверно, из-за непрерывности функции в точке х0 не следует существование функции в этой точки.

y =х

Н епрерывна в точки х0=0

limx, x0

x+0

lim|x|= =0

lim(-x), x<0

x-0

y(0)=0

limy(x)=limy(x)=y(0)=0   limy(x)=y(0)=0  функция непрерывна

x+0 x-0 x0

lim∆y/∆x-не существует, действительно х+0y(x)=x

x0

lim[y(x)-y(0)]/x=lim(x-0)/x=1

x+0 x+0

x-0y(x)=-x

lim[y(0)-y(x)]/x=lim(0-x)/x=-1 то есть lim∆y/∆x – не существует

x-0 x-0 х0

Теорема: Пусть  u’(x) и v’(x), тогда (uv)’=u’v+v’u

Доказательство: Зададим приращение ∆х в точки х. Рассмотрим: lim[∆(uv)]/∆x=

x0

lim[1/∆x][u(x+∆x)v(x+∆x)-u(x)v(x)]=lim[1/∆x][ u(x+∆x)v(x+∆x)-u(x)v(x+∆x)+u(x)v(x+∆x)-u(x)v(x)=

x0 x0

lim[(v(x+∆x))(u(x+∆x)-u(x))]/∆x+lim[(u(x))(v(x+∆x)-v(x))]/∆x=v(x)u’(x)+u(x)v’(x)

x0 x0

Теорема: (о произведение частного)

Пусть  u’(x) и v’(x), v’(x)0 в О(х), тогда (u/v)’=[u’v-v’u]/v2

Доказательство: (u/v)’=[u(1/v)]’=[u’(1/v)]+[(1/v)’u]. Функция u(x) и v(x) –непрерывны в точки х0.

lim[∆(1/v)/∆x]=lim[1/∆x][1/(v(x+∆x))-1/v(x)]=lim[[v(x)-v(x-∆x)]/[∆xv(x)x(x+∆x)]]-[v’(x)/v2(x)]

x0 x0 ∆x0

(u/v)’=u’(1/v)-(uv)’/v2=[u’v-uv’]/v2 что и требовалось доказать

Таблица производных

y=sinx

(sinx)’=lim[sin(x+∆x)-sinx]/∆x=lim[2sin(∆x/2)cos((2x+∆x)/2)]/∆x=lim[2(∆x/2)cos(x+(∆x/2))]/∆x=cosx

x0 x0

(sinx)’=cosx

г де sin(x)

(sin(x))’=cos(x)

y=cos(x)

(cos(x))’=lim[cos(x+∆x)-cos(x)]/∆x=lim[-2sin(∆x/2)sin((2x+∆x)/2)]/∆x=lim[-2(∆x/2)sin(x+(∆x/2))]/∆x=-sinx

x0 x0 x0

(cos(x))’=-sinx

г де cosx

(cos(x))’=-sin(x)

y=tg(x)

(tg(x))’=(sin(x)/cos(x))’=[(sin(x))’cos(x)-(cos(x))’sin(x)]/cos2x=[cos2x+sin2x]/cos2x=1/cos2x

(tg(x))’=1/cos2x

г де tg(x)

(tg(x))’=1/cos2x

Лекция №11

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 24 октября 2000 г.

Тема: «Производные, дифференциал»

y=xn

y’(x)=lim[(x+∆x)n-xn]/∆x=1=lim[xn(1+(∆x/x))-1]/∆x=/∆x/x0,∆x0\=lim[xn(∆x/x)n]/∆x=nxn-1

x0 x0 x0

( xn)’=nxn-1

y=x^3

y’=3x^2

Рассмотрим когда х=0 y’(0)=lim(∆x)n/∆x=lim(∆x)n-1=/n>1\=0 если n=1/0,n>1;1,n=1\

x0 ∆x0

Дифференциал функции.

Определение: Пусть y=f(x) определена в некоторой О(х0) – она называется дифференцируемой в точке х0, если её приращение в этой точки представимо в виде:

∆y=∆f(x0)=A∆x+(∆x)∆x)1

(0)=0 A=const

Определение: линейная ∆х часть приращение дифференцируемой функции называется дифференциалом функции в точке х0:

dy=df(x0)A∆x

Теорема: Если функция дифференцируема в точке х0 то A=f’(x0), то она имеет производную в этой точке, то A=f’(x0); наоборот если функция имеет производную в этой точке, то она дифференцируема в этой точке – называется дифференциалом.

Доказательство: Пусть y=f(x) дифференцируема в точке х0, то есть в некоторой О(х0) справедливо равенство ∆f(x0)=A∆x+(∆x)∆x1; (0)=0. Поделим обе части этого равенства на ∆х и приведём к пределу при ∆х0:

lim(∆f(x0))/∆x=lim(A+(x))=A. Этот предел существует, меньше , тогда по определению этот предел есть

x0 ∆x0

производная.

Доказательство: (в обратную сторону) Пусть в точке х0  f’(x0)(<) – это означает, что f(x) определена в некоторой О(х0) и  lim(∆f(x0))/∆x=f’(x0) по определению предела следует, что в некоторой О(х0)

x0

(∆f(x0))/∆x=(∆х)+f’(x0) при ∆х0  ∆f(x0)=f’(x0)+(∆x)∆x, так как lim(∆x)=0, то в точке х0 y (∆x) может

х0

быть лишь устранимым разрывом . Устраним его, определим и доопределим:

(0)=0, тогда ∆f(x0)=f’(x0)∆x+(∆x)∆x  A=f’(x0) из установленного соответствия получим выражения для дифференцируемой функции df(x0)=f’(x0)∆x

Следствие: по определению полагают дифференциал независимой переменной равной её приращению

dx=∆x (х - независимая переменная)

df(x)=f’(x)dx

f(x)=x – вычислим дифференциал f’(x)=1 df(x)=dx=f(x)∆x=1∆x

Замечание: дифференциал функции зависит от двух переменных – от самой точки х и от ей приращения

y=cosx x0=/2 ∆x=/180

y’=-sinx y’(/2)=-sin(/2)=-1

dy(/2)=-1∆x=-1/180=-/180

Теорема: Пусть y=f(x) дифференцируема в точке х0, а z=g(y) дифференцируема в точке у0=f(x0), тогда сложная функция z=g(f(x) - дифференцируема в точке х0 и z’(x0)=g’(f)f’(x)

Доказательство: (1) ∆z=g’(y0)∆y+(∆y)∆y

(2) ∆y=f(x0)∆x+(∆x)∆x (0)=0 (0)=0

Подставим в первое равенство второе:

∆z=g’(y0)f(x0)∆x+g’(y0)(∆x)∆x+[f’(x0)+(∆x)∆x][f’(x0)∆x+(∆x0∆x]

lim∆z/∆x=limg’(x0)f’(x0)+limg’(x0)(∆x)+lim (f’(x0)+(∆x)∆x)[f’(x0)+∆x]  z’(x0)=g’(y0)f’(x0) что и требовалось

x0 x0 x0 x0

доказать.

Теорема: Пусть функция y=f(x) возрастает (убывает) в О(х0) и дифференцируема в точке х0. Тогда обратная у ней функция x=g(y) дифференцируема в точки y0=f(x0), причём g’(y0)=1/f(x0)

Д оказательство: из дифференцируемой функции f(x) в точке х0 и из монотонности следует существование обратной функции в точке х0 и её непрерывность lim[∆y(y0)]/∆y= ∆y0, то ∆у0  в силу строгой

у0 монотонности функции и обратной =

к ней следует ∆х0

=lim∆x/∆y=lim1 /(∆y/∆x)= в силу непрерывности следует =1/[lim∆y/∆x]=1/[lim∆f(x0)/∆x]=1/f(x0) f(x0)0

y0 y0 ∆у0, то ∆х0 и наоборот x0 x0

y=ax

y’(x)=lim[ax+x-ax]/∆x=lim[ax(ax-1)]/∆x=lim[ax(exlna-1)]/∆x=/∆x0, то ∆xlna0\=lim[ax∆xlna]/∆x=axlna

x0 x0 x0 x0

y ’=axlna, частный случай y=ex(ex)’=ex

y=x^2

y’=x^2 lnx

y=lnx

y’=lim[ln(x+∆x)-lnx]/∆x=lim[ln((x+∆x)/x)]/∆x=lim[ln(1+∆x/x)]/∆x=/∆x/x0 при ∆x0\=lim(∆x/x)/∆x=1/x

x0 x0 x0 x0

( lnx)’=1/x

y=lnx

y’=1/x

y =logax=lnx/lna (logax)’=1/xlna

y=lgx

y’=1/xln10

y=arcsinx обратная функция x=siny x[-1;1] y[-/2;/2]

(arcsinx)’x=x0=1/(siny)’y0=y=1/cosyy0=y=

y[-/2;/2], cosy0 cosy>0, если y[-/2;/2] то есть x1

=1/(1-sin2y)y=y0=1/(1-(sinarccosx)2)x=x0=1/(1-x02)

(arcsinx)’=1/(1-x2)


y=arcsinx

y’=1/(1-x^2)

y=acrcosx, обратная x=cosy x[-1;1] y[0;]

(arcosx)’=1/(cosy)’y=y0=1/-sinyy=y0=-1/(1-cos2y)y=y0=-1/(1-(cosarccosy)2)x=x0=-1/(1-x02)

(arcosx)’=-1/(1-x2)

y=arccosx

y’=--1/(1-x^2)

y=arctgx обратная функция x=tgy y(-/2;/2)

(arctgy)’=1/(tgy)’=cos2y= / 1+tg2y=1/cos2y \ =1/(1+x2)

(arctgy)’=1/(1+x2)

( arcctgy)’=-1/(1+x2)

y=arctgsx

y’=-1/ (1+x^2)

y=arcctgx

y’=--1/ (1+x^2)

Гиперболические функции.

chx=(ex+e-x)/2

shx=(ex-e-x)/2

chx2-shx2=1

chx2+shx2=ch2x

ch(-x)=chx

sh(-x)=-shx

chx shx

c thx=chx/shx

t hx=shx/chx

(chx)’=sh(x)

(shx)’=ch(x)

(thx)=1


Лекция №12

Ведущая: Голубева Зоя Николаевна

Дата: среда, 25 октября 2000 г.

Тема: «Линеаризация»

Геометрический смысл дифференциала функции и уравнение касательной.


f’(x0)=tg

уравнение прямой : Y=kx+b

y0=f(x0)=kx0+b

k-угловой коэффициент прямой

k=tg=f’(x0)

Y=f(x0)+f(x0)-f’(x0)x0

b=f(x0)-kx0

Y=f(x)+f’(x0)(x-x0)

∆f(x0)=f’(x0)∆x+(∆x)∆x при ∆х0  в некоторой

O(x0) f(x0)=f’(x0)+f’(x0)∆x+(∆x)∆x при ∆х0

Y1=f(x0)+f’(x0)(x-x0)a=f’(x0)+f’(x0)∆x

df(x0)=f’(x0)∆x

Геометрический смысл дифференциала:

df(x0) – это приращение ординаты при движение по касательной проведённой к графику функции в точки (х0;f(x0).

Замечание: Часто говорят о касательной проведённой в точке х0.

Линеаризация функции.

Определение: Замена функции в окрестности данной точки линейной функции называется линеаризацией функции, точнее в О(х0) заменяется отрезком касательной в точке х0.

( *) f(x)-Y=(∆x)∆x-o(∆x)

Если в равенстве (*) отбросить правую часть, то мы

получим приближённое равенство:

f(x)f(x0)+f’(x0)(x-x0), xx0

Y=f(x0)+f’(x0)(x-x0) – уравнение касательной в точке х0

Формула получена из определения дифференциала в точке х0 функции

f(x)=f(x0)+f(x0)∆x+o∆x при ∆х0 – называется критерием дифференциальности функции в точке х0.

Приближенные вычисления и оценка погрешности вычисления.

Можно приближенно вычислять значение функции в точках близких к заданной точки.

38,001=1

х0=8

х=8,000

f(x)=3x

f(x0)=f(8)=2

Проведём линеаризацию выбранного корня.

f’(x)х=8=(3x)’x=8=1/3x-2/3x=8=1/12

3x2+1/12(x-8), x8

3x2+0,001/12

Yкас=2+1/12(x-8)

3x=2+1/12(x-8)+o(x-8) при х8

Погрешности вычисления.

f(x)-f(x0)=df(x0)+o(x-x0) при хх0

∆f(x0)df(x0), xx0

1=∆f(x0)df(x0)

f(x)=10x в точке х0=4, если ∆х=0,001 х=40,001

104∆=10423

f’(x)=10xln10; f’(4)=104ln10=23000; ln102,2

∆230000,001=23

Изучение поведения функции при помощи первой производной.

Слева от М0 tg >0; Справа от М0 tg <0

tg f’(x)>0 слева от М0

tg f’(x)<0 справа от М0

Теорема: Пусть y=f(x) дифференцируема  x(a,b) и f’(x)>0 (f’(x)<0), тогда f(x) возрастает (убывает) на (а,b)

a( |x1 |x2 )b

x1,x2(a,b) x12

Надо доказать: f(x1)2)

Применим теорему Лангранджа на отрезке (х1,x2)Теорема.

f(x2)-f(x1)=f’(c)(x2-x1) где c(x1,x2)

f(x2)-f(x1)>0  f(x2)>f(x1)

Экстремумы функции.

М ожно указать О(х1) в которой все значения функции

f(x)1) b и О11) анологично для точки х2

f(x)>f(x1) b и О21). Значенгие функции в точке М1, М3 и М5

max; M2 и М4 – min – такие точки назавыются точкками

экстремума или точками локального max и min.

Определение: (точки экстремума)

Пусть функия f(x) определена в некоторой О(х0) и f(x)>f(x0) в

О(х0) или f(x)0) в этом случае точка х0 – называется точкой локального max (min).

З амечание:

f(x)f(x1) в О11)

f(x)f(x2) в О22)

говорят, что точки х1 и х2 точки не строгого локального

экстремума.

Теорема: (Ферма) (о необходимости условия экстремума дифференцируемой функции)

Пусть y=f(x) дифференцируема в точки х0 и точка х0 – точка экстремума, тогда f(x0)=0

Доказательсто: Заметим, что х0 точка экстремума, то в её окрестности f(x) – f(x0) сохраняет знак. Запишем условие ∆f(x0)=f(x)-f(x0)(x-x0)+o(x-x0)

f(x)-f(x0)=(x-x0)[f(x0)+(x-x0)] то при х – достаточно близких к х0 знак выражения стоящего в квадратных скобках совпадает со знаком f’(x0)0 (x-x0) – меняет знак при переходе черех точку х0  f’(x0)=0

Лекция №13

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 31 октября 2000 г.

Тема: «Экстремумы»

Замечание:

О братное утверждение неверно. Из-за того, что произведение в данной точки равно нулю, не следует, что это экстремум.

y=(x-1)3

y’=3(x-1)2

y’(1)=0

x0=1

xO-(1)f(x)<0

xO+(1)f(x)<0

x=1 – не точка экстремума.

Теорема (Ролля):

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на (a,b). Кроме того на концах интервала она принемает равные значения f(a)=f(b), тогда  с(a,b): f(c)=0

Доказательство: Така как функция непрерывна на отрезке [a,b], то по второй теореме Вейштрасса есть наибольшее и наименьшее значение (m,M), если m=M, то f(x)const (x[a,b]) (const)’=0.

Пусть m

Замечание: условие дифференцируемсти нельзя отбросить.

непрерывна на отрезке [a,b]

Геометрический смысл.

f’(x)=0, то касательная  оси х. Теорема не утверждает, что это единственная точка.

Теорема Лангранджа:

Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на отрезке (а,b), то  с(a,b): f(b)-f(a)=f(c)(b-a)

Доказательство:

F(x)=f(x)+x где  - пока неизвестное число.

F(x) – непрерывна на отрезке [a,b] как сумма непрерывной функции

f(x) – дифференцируема на отрезке [a,b] как сумма дифференцируемой функции.

Выберем число , так чтобы на отрезке [a,b] F(x) принимало равное значение.

F(a)=f(a)+a

F(b)=f(b)+b

F(a)=F(b)  f(a)-f(b)=(a-b)  =[f(b)-f(a)]/[b-a]

F(x) – удовлетворяет условию теоремы Роллера на отрезке [a,b]   c(a,b):F’(c)=0, то есть F’(x)=f’(x)+

0 =f’(c)+  f’(c)=-=[f(b)-f(a)]/[b-a]

То есть на кривой которая наклонена

к оси х под таким же углом как и секущая

[f(b)-f(a)]/[b-a]=tg=f(x)  c(a,b)

Замечание:

Часто точку с можно представить в

нужном виде:

с=х0+∆х

0<(c-x0)/(x-x0)= <1

c-x0=(x-x0)

c=x0+(x-x0)1

f(x)-f(x0)=f’(x0+∆x)(x-x0)

0<<1

∆f(x0)=f’(x0+∆x)∆x

Теорема: (о необходимых и достаточных условиях экстремума по первой производной)

Пусть y=f(x) непрерывна на отрезке [a,b] и дифференцируема в О(х0). Если f’(x) меняет знак при переходе через точку х0, то точка х0 – точка экстремума. Если меняет знак:

с + на – то это точка максимума

с – на + то это точка минимума

Доказательство:  х1  О-0) на [x1,x0];  c1(x1,x0) f(x0)-f(x1)=f’(c1)(x0-x1)  f(x0)>f(x1) x1O-(x0)

 х2  О+0) на [x0,x2];  c2(x0,x2) f(x2)-f(x0)=f’(c2)(x2-x0)  f(x2)0) x2O+(x0)

f(x0)>f(x) xO(x0)  точка х точка максимума.

Если в точке х0 существует производная то она обязательно равна 0 в силе теоремы Ферма. Но могут быть точки в которых f(x) существует, а f’(x) не существует.

Принцип решения подобных задач:

Условие: найти наибольшее и наименьшее значение функции не отрезке [a,b].

Ход решения:

  1. Находим точки в которых производная либо равна 0 либо не существует f’(x)=0 или f’(x)  x1, xn

  2. Вычисляем знак функции на концах отрезка и в этих точках f(a), f(b), f(x1)….f(xn)

  3. Выбираем наибольшее и наименьшее mf(x)

Определение: точки в которых функция определена, а производная либо равняется нулю, либо не существует называют критическими точками.

Производная функции высшего порядка.

Существует f’(x)  x(a,b), тогда эта производная сама является функцией х (х)=f’(x) и можно ставить о дифференцируемости этой функции.

Существует ’(x)  x(a,b), то мы называем её второй производной ’(x)f’’(x)

Лекция №14

Ведущая: Голубева Зоя Николаевна

Дата: среда, 8 ноября 2000 г.

Тема: Производная функции высшего порядка.

f(n)=def=(f(n-1)(x))’

’’’ – [dnf(x)]/dxn=(d/dx)([dn-1f(x)]/dxn)

Теорема: (Коши – обобщение теоремы Лангранджа1)

Пусть функция f(x) и g(x) непрерывны на отрезке [a,b], дифференцируема на интервале (a,b) и g’(x)0, x(a,b), тогда  с  (a,b) такая, что [f(b)-f(a)]/[g(b)-g(a)]=f’’(c)/g’(c)

Доказательство: Отметим прежде всего, что g(b)g(a), так как по теореме Лангранджа1 для функции g(x)

g(b)-g(a)=g’(c1)II (b-a)III0 (c1(a,b)) Рассмотрим вспомогательную функцию

F(x)=f(x)-g(X) где  -неизвестное число

F(x) – непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b)

Потребуем F(a)=f(b)

F(b)=f(b)-g(b)

---

F(a)=f(a)-g(a)

___________________

0=f(b)-f(a)-(g(b)-g(a)) =[f(b)-f(a)]/[g(b)-g(a)]. Получим, что F(x) удовлетворяет условию теоремы Ролля4

с(a,b):F’(c)=0, то есть F’(c)=f’(c)-g’(c)  =f’(c)/g’(c)=[f(b)-f(a)]/[g(b)-g(a)], что и требовалось доказать.

Правила Лопиталя.

Это правило в случае дифференцируемости функции позволяет избавляться от неопределённостей типа 0/0 или / при вычисление пределов.

Теорема: Пусть функции f(x) и g(x) дифференцируемы в О(х0), g’(x0)0 в О(х0), f(x0)=g(x0)=0 и 

lim f’(x)/g’(x)=k (конечный или бесконечный предел), тогда  lim f(x)/g(x)=lim f’(x)/g’(x)=k

xx xx xx

Доказательство: lim f(x)/g(x)=lim [f(x)-f(x0)]/g(x)-g(x0)=lim f’(c(x))/g’(c(x))= c=c(x) лежащая между х их0 если

xx xx xx

хх0 то сх0=lim f’(x)/g’(x)=k

xx

Замечание(1): f(x0)=g(x0)=0 требование можно заменить требованием lim f(x)=0, lim g(x)=0, то есть в т х0 f(x) и

xx xx

g(x) могут иметь устранимый разрыв, действительно достаточно переопределить или доопределить f(x) и g(x) по непрерывности, так чтобы f(x0)=g(x0)=0

Замечание(2): Если  f’(x0) и g’(x0), g’(x0)0, то утверждение теоремы будет:

lim f(x)/g(x)=lim f’(x)/g’(x)=lim [(x-x0)(f’(x0)+(x-x0))]/ [(x-x0)(g’(x0)+ (x-x0))]=f’(x0)/g’(x0)

xx xx xx

Теорема: (/) Пусть функции f(x) и g(x) непрерывны в О(х0), g'(x)0 и О(х0), дифференцируемы в О(х0) и

lim f(x)=lim g(x)=;  lim f’(x)/g’(x)=k. Тогда lim f(x)/g(x)=lim f’(x)/g’(x)=k

xx xx xx xx xx

Без доказательства!

Замечание: Если функции f’(x) и g’(x) сами удовлетворяют условия теоремы то правило Лопиталя можно применить повторно:

f(x)=ex g(x)=xn x

lim ex/xn= lim ex/1!= nN lim ex/xn= lim ex/nxn-1= lim ex/[n(n-1)xn-2]=lim ex/n!=+

x + x+ x+ x+ x+ x+

f(x)=lnx

x+

g(x)=xn

lim lnx/xn= lim (1/x)/nxn-1= lim 1/nxn=0

x+ x+ x+

Формулы Тейлора.

Определение: (многочлена Тейлора) Пусть функция y=f(x) – n – раз дифференцируема в точке х0 многочлен (полином) вида

Tn(х)=f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)]/n! называется многочлен Тейлора с центром в точке х0 или многочленом по степеням (х-х0)

Свойства многочлена Тейлора.

Теорема: (основное свойство многочлена Тейлора) Пусть функция y=f(x) – n – раз дифференцируема в точке х0 f(x)=Tn(x0); f’(x0)=Tn’(x0),…,f(n)(x0)=Tn(n)(x0)

Доказательство; (подстановкой) Tn(х)=f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)]/n! , подставим х0 получим Tn(x0)=f(x0). Продифференцируем многочлен Тейлора

Tn’(x)=f’(x0)/1!+[f’’(x0)2(x-x0)]/2!+ [f’’’(x0)3(x-x0)2]/3!+ [fn(x0)n(x-x0)n-1]/n!, подставим вместо х х0

Tn(x0)=f(x0)

Tn’’(x)=f’’(x0)/1!+[f’’’(x0)32(x-x0)]/3!+…+ [f(n)(x0)n(n-1)(x-x0)n-2]/n!

Tn’’(x)=f’’(x0)

Формула Тейлора с остаточным членом пеано.

Теорема: Пусть функция y=f(x) – n – раз дифференцируема в точке х0, тогда в О(х0) f(x)=Tn(x)+o((x-x0)n), xx0

f(x)= f(x0)+[f’(x0)(x-x0)]/1!+ [f’’(x0)(x-x0)2]/2!+ [fn(x0)(x-x0)n]/n!+0((x-x0)n)(x-x0)1

lim[f(x)-Tn(x)]/(x-x0)n=(0/0)=lim [f’(x)-Tn’(x)]/n(x-x0)n-1=(0/0)=….=lim [f(n)(x)-Tn(n)(x)]/n!=0  функция

xx xx xx

[f(x)-Tn(x)]/(x-x0)n=(х-х0)ii  f(x)-Tn(x)=(x-x0)n(x-x0)=0((x-x0)n) при хх0 что и требовалось доказать.

Замечание: в случае если х0=0 формула Тейлора называется Маклорена f(x)=f(0)+[f’(0)x]/1!+ [f’’(0)x2]/2!+ [fn(0)xn]/n!+0xn при х0

1 На концах отрезка [a,b] и на концах принимает значение разных знаков

2 (x-x0)-бесконечно малое при хх0

1 x0

1 (∆x) – бесконечно малое при ∆х0, а (∆x)∆х – есть о∆х

1 Y – ордината касательной

a – x-x0 =∆x

1 ∆-погрешность вычисления.

Теорема –Если f(x) непрерывна на [a,b] дифференцируема на отрезке (а,b), то  с(a,b): f(b)-f(a)=f(c)(b-a)

1 (x-x0)=∆x

1 Теорема – Если f(x) непрерывна на [a,b] дифференцируема на отрезке (а,b), то  с(a,b): f(b)-f(a)=f(c)(b-a)

II – g’(c1)=0 по условия теоремы

III – (b-a)=0

4 - Теорема (Ролля): Пусть функция y=f(x) непрерывна на отрезке [a,b] и дифференцируема на (a,b). Кроме того на концах интервала она принемает равные значения f(a)=f(b), тогда  с(a,b): f(c)=0

1 0((x-x0)n)(x-x0) – остаточный член в форме пеано

ii (х-х0) – бесконечно малое при хх0

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее