matan2 (Лекции (1-18) по мат. анализу 1 семестр)

2016-07-31СтудИзба

Описание файла

Документ из архива "Лекции (1-18) по мат. анализу 1 семестр", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "matan2"

Текст из документа "matan2"

Л

По всем вопросам и по дальнейшему пополнению лекций обращаться на ящик

van_mo_mail@mtu-net.ru или на сотовый:

8-901-7271056 спросить Ваню

екция №5

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 25 сентября 2000 г.

Тема: Бесконечно большие последовательности

Теорема:

lim(1-1/n)n=1/e e=2,7183

n+

0an=1-1/n1 nN, то есть an=(1-1/n)n- ограниченна.

n+1an=n+1(1-1/n)n1=n+1(1-1/n)(1-1/n)…(1-1/n)1<[1+(1-1/n)+…+(1-1/n)]/n+1=(n+1-n1/n)/n+1=n/n+1=1-1/n+1

n+1(1-1/n)n<1-1/n+1

(1-1/n)n<(1-1/n+1)n+1

ann+1 nN  последовательность возрастает и ограниченная.

(1-1/n)n – имеет конечный предел

lim(1-1/n)n=1/e

n+

Следствие

lim(1+1/n)n=e

n+

lim1/(1+1/n)n=(n/n+1)n=[1-1/(n+1)]n+1/ [1-1/(n+1)]=(1/e)/1=1/e

n+

lim[1/(1+1/n)n]=1/e

n+

lim(1+1/n)n=e

n+

Определение под последовательности

Пусть дана an зададим произвольный набор натуральных чисел таких, что

n123<…k<….

an1,an2,…,ank,…

Полученная последовательность называется под последовательностью и сходной последовательности.

an=(-1)n

{an}={-1;1;-1;1….}

n1=2;n2=4,….,nk=2k

{ank}={1,1,1,1…}

Теорема

Пусть последовательность an сходится, тогда последовательности

 lim an=a {ank} – гас и lim

n+

lim ank=0

n+

Доказательство так как an – сходиться, то ε>0 N: n>N  an-a<ε

ank; nk>N то есть ank-a<ε

Пример

an=(-1)n – не имеет предела

{a2n}={1,…,1,…,}

{a2n-1}={-1,….,-1,…}

имели бы тот же самый предел.

Предел функции.

Определение

Пусть y=f(x) определена в O(x0). Мы говорим, что функция f(x) имеет предел в при хх0 если ε>0  >0

x:0<x-x0< f(x)-b<ε

lim f(x)=b

xx

Через окрестности это определение записывается следующим образом

ε>0 >0 x0(x0)f(x)0ε(b)

Если lim f(x)=0, то f(x) наз бесконечно малой при xx0.

xx

Замечание. Необходимо указать в каком именно процессе f(x) бесконечно малое. Надо указать к какому числу  а.

f(x)=x-1

1.x1 lim(x-1)=0, то есть y=x-1 бесконечно малое при x1

x1

2 .x2 lim(x-1)=1, то есть y=x-1 не является бесконечно малой при x2

x1

Пример

f(x)=2x+1 x1

Докажем lim(2x+1)=3

x1

ε>0 >0 x:0<x-1< (2x+1)-3<ε

(2x+1)-3<ε

|x-1<ε/2

x1

Положим =ε/2

Теорема о бесконечно малом

1)(x);(x) – бесконечно малое xx0  (x)+(x) – бесконечно малое при xx0

2)(x);(x) – бесконечно малое при xx0

3)Если f(x) – ограниченна в O(x0) и (x) – бесконечно малое при xx0, то f(x);(x) – бесконечно малое при xx0

Доказательство (3)

Так как f(x) – ограниченна в O(x0), то  С>0: xO(x0)|f(x)C;

Так как (x) – бесконечно малое при хх0, то ε>0 >0 x: 0<x-x0<  (x)<ε ε1>0

Положим ε=ε1/c

>0 x: 0<x-x0|< f(x)(x)=f(x)a(x)1 lim f(x)(x)=0, то есть f(x)a(x) – бесконечно малое при xx0

xx

Лекция №6

Ведущая: Голубева Зоя Николаевна

Дата: среда, 26 сентября 2000 г.

Тема: Замечательные пределы

Теорема

f(x)>g(x) в O(x0) и  lim (f(x))=b и  lim (g(x))=c. Тогда bc

xx xx

Доказательство:

Рассмотрим функцию (x)=f(x)-g(x)>0 в O(x0)  lim ((x))= lim (f(x)) - lim (g(x))= b-c и в силу предыдущей

xx xx xx

теоремы b-c0, то есть b0 что и требовалось доказать.

Теорема

f(x)(x)g(x)  xO(x0) и  lim (f(x))=b и  lim (g (x))=b.  lim ( (x))=b

xx xx xx

Доказательство:

f(x)=b+(x)

g(x)=b+(x)

где (x) и (x) – бесконечно малые при хх0

b+(x)(x)b+(x)

Так как (х) и (х) – бесконечно малые то ε>0 1>0:  xO1(x0)  (x)<ε

2>0:  xO2(x0)  (x)<ε

Положим =min{1;2}

Т огда  xO(x0)  (x)<ε

(x)<ε

-ε<(x)<ε

-ε<(x)<ε

b-ε

-ε<(x)-b<ε

(x)-b<ε  xO(x0)

 ε>0  =min{1;2}  (x)-b<ε xO(x0) то есть lim ( (x))=b

xx

Первый замечательные пределы.

Терема lim (sin(x)/x)=1

x0

Д оказательство:

SOMN=1/2 sin(x)

SсекOMN=1/2(x)

SOKN=1/2 tg(x)

SOMNсекOMN< SOKN

1/2sin(x)<1/2(x)

sin(x)

1

lim (1-cos(1/n))=0

n+

lim (1-cos(x))=0  lim (cos(x))=1

x0 x0

lim (x/sin(x))=0

x0

x>0

lim (x/sin(x))=1

x0

lim(1/(x/sin(x)))= lim(sin(x)/x)=1 что и требовалось доказать

x0 x0

Определение бесконечного предела и пределов при х+.


lim (f (x))=+  ε>0 >0:  xO(x0)f(x)Oε(+)

xx

(x): 0<x-x0<

(////////// x

ε


lim (f (x))=-  ε>0 >0:  xO(x0)f(x)Oε(-)

xx

(x): 0<x-x0<


lim (f (x))=  ε>0 >0:  xO(x0)f(x)Oε()

xx

f(x)>ε


lim (f (x))=b  ε>0 ∆>0:  xO(+)f(x)Oε(b)

x+

 x: x>∆ f(x)-b <ε


lim (f (x))=b  ε>0 ∆>0:  xO(-)f(x)Oε(b)

x-

 x: x<-∆ f(x)-b <ε

О дносторонние пределы.

Определение

f(x) определена в O+(x0)

lim (f (x))=b  ε>0 >0:  xO+(x0)f(x)Oε(b) x00+

xx+0


Определение

f(x) определена в O-(x0)

lim (f (x))=b  ε>0 >0:  xO-(x0)f(x)Oε(b) x0-0

xx-0

Теорема Пусть f(x) определена в O(x0) Для того чтобы существо-

вал предел  lim(f(x))=b   lim(f(x))=lim(f(x))=b

xx xx+0 xx-0

Пусть  lim(f(x))=b, то есть ε>0 >0:  xO(x0)f(x)Oε(b) f(x)O(b) для  xO+(x0) и для  xO-

xx

 xO-(x0) lim(f(x));lim(f(x))=b что и требовалось доказать.

xx+0 xx-0

Второй замечательный предел.

Теорема lim(1+1/x)x=e

x+

Доказательство: Пусть n – целая часть х – n=[x] nx

[1+1/(n+1)]n(1+1/x)x(1+1/n)n+1

Если x+, то n+

[1+1/(n+1)]n+11/[1+1/(n+1)](1+1/x)x(1+1/n)n(1+1/n)  lim(1+1/x)x=e

x+

Лекция №7

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 3 октября 2000 г.

Тема: Сравнение бесконечно больших и бесконечно малых.

Определение.

Пусть (x) и (x) – бесконечно малые при хх0 ()

  1. (x) ~ (x) при хх0 () если lim (x)/(x)=1 xx0 ()

  2. (x) и (x) одинакового порядка при хх0 () если lim (x)/(x)=с0 xx0 ()

  3. (x) бесконечно малое более высокого порядка малости чем (x) при хх0 () если lim (x)/(x)=0 xx0 ()

Определение.

Пусть f(x) и g(x) – бесконечно большое при хх0 ()

1) f(x) ~ g(x) при хх0 () если lim f(x)/g(x)=1 xx0 ()

2)f (x) и g (x) бесконечно большие одинакового порядка роста, если при хх0 () если limf(x)/g(x)=с xx0 () <

В частности, если с=1, то они эквивалентны

  1. f (x) бесконечно большое более низкого порядка роста чем g (x) или иначе g(x) бесконечно большое более высокого порядка роста чем g(x) при хх0 () если lim f (x)/g (x)=0 xx0 ()

Примеры:

  1. s in(x) – бесконечно малое

x при хх0 – бесконечно малое

Сравним их lim sin(x)/x=1  sin(x)~x

x0

при х0


  1. 1n(1+x) – бесконечно малое

х при х0 – бесконечно малое

Сравним их lim ln(1+x)/x= lim ln(1+x)1/x =1

x0 x0

ln(1+x) ~ x, при х0


  1. x2 – бесконечно большие

2+1, при х+ – бесконечно большие

Сравним lim x2/(2x2+1) = lim x2/x2(2+1/x2)=1/2

x+ x+

то есть функция является бесконечно большой и

одинакового порядка. Замечание: если одну из

функций одинакового порядка роста домножить на

одинаковую const, то они станут эквивалентны.

Определение:

  1. пусть (х)=о(х) – бесконечно малое при хх0(). То мы говорим, что (х) и (х) при хх0 (), если (х)=(х)(х), бесконечно малое при хх0 (). Другими словами - (х) – бесконечно малое более высокого порядка, чем (х) така как (х)/(х)=(х) – бесконечно малое, то есть lim (x)/(x)=0 x0 ()

  2. пусть f(х)=оg(х) – бесконечно большое при хх0(). То мы говорим, что f(х) и g (х) при хх0 (), если f (х)=(х)g (х). Другими словами - f (х) – бесконечно большое более низкого порядка, чем g(х) так как f(х)/g (х)=(х) – бесконечно малое, то есть lim f (x)/g (x)=0 x0 ()

Шкала бесконечности.

Степенные бесконечности.

xn=o(xm), 0

Докажем:

xn=xm(xn/xm)=xm(1/x(m-n))=xm(x) m-n>0 xm(x)o(xm)

Показательные бесконечности.

ах=о(bх), 1

Докажам

ax=ax(bx/bx)=ax(a/b)x=bx(xo(bx) (0

Логарифмическая бесконечность

l n(x)=o(x), >0. Логарифмическая бесконечность слабее любой степенной бесконечности.

ln(x)

lim ln(x)/x=lim [(ln(x)/(x/2x/2))((/2)/(/2))]=

x0 x0

lim [(ln(x)/x/2)(2/(x/2)]

x0

Произведение бесконечно малых на ограниченную

равно бесконечно малой.

lim (ln(x)/x)=0  (lim(x))/x=(x)  ln=x(x)ox,

x0

x+

Показательная и степенная.

Xk=o(ax),  k>0,a>1 x+ lim(xk)/(ax)=0

x+

Теорема: Пусть (x) ~ 1(x) при xx0 ()

(x) ~ 1(x) при xx0 ()

Тогда lim (x)/(x)=lim 1(x)/1(x)

xx0 () xx0 ()

Доказательство:

lim(x)/(x)=lim[(x)1(x)1(x)]/[1(x)1(x)(x)]=lim((x)/(x))lim(1(x)/(x))lim(1(x)/1(x))=lim 1(x)/1(x) что

x0 x0 x0 x0 x0 x0

и требовалось доказать. Замечание: аналогичное утверждение справедливо для двух бесконечно больших.

Пример:

lim sin(x)/3x=limx/3x=1/3

x0 x0

Определение: (главного слагаемого)

1(x)+2(x)+…+n(x), при xx0 ()

Главным слагаемым в этой сумме называется то слагаемое по сравнению с которым остальные слагаемые являются бесконечно малыми более высокого порядка малости или бесконечно большие более низкого порядка роста.

1(x) – главное слагаемое, если 2(х)=о(1(х)),…,n(x)=o(1(x)) при xx0 ()

Конечная сумма бесконечно малых эквивалентна своему главному слагаемому:

1(x)+2(x)+…+n(x) ~ 1(x) , при xx0 () если 1(х) – главное слагаемое.

Доказательство:

lim [1(x)+2(x)+…+n(x)]/1(x)=lim[1(x)+1(x)(x)+…+1(x)(x)]/1(x)=lim[1(x)(1+1(x)+…+n(x))]/1(x)=1 xx0 () xx0 () xx0 ()

Пример:

lim (ex+3x100+ln3x)/(2x+1000x3+10000=lim ex/2x=lim ex/(ex(x))=+

x+ x+ x+

2x=o(ex)ex(x)

Основные эквивалентности.

ex-1 – бесконечно малое при х0. lim (ex-1)/x=1, то есть ex-1 ~ x при x0

x0

1-cosx – бесконечно малое при х0. lim (1-cos x)/(x2/2)=lim{2sin(2x/2)]/[x2/2]=lim [2(x/2)2]/[x2/2]=1,

то есть

1-cos(x) ~ x2/2 при х0 и (1+x)p-1 ~ px при х0

Лекция №8

Ведущая: Голубева Зоя Николаевна

Дата: вторник, 10 октября 2000 г.

Тема: «Асимптотические формулы»

Формулы содержащие символ о - называются асимптотические.

1) lim [sin(x)/x]=1  (по определению конечного предела sin(x)/x=1+(x), где (х) – бесконечно малое при х0

x0

 sin(x)=x+(x)x, где (х) – бесконечно малое при х0  sin(x)=x+ox, при х0; sin(x)~x, при х0

2) lim [ln(1+x)/x]=1  (по определению конечного предела ln(1+x)/x=1+(x), где (х) – бесконечно малое при

x0

х0  ln(1+x)=x+(x)x, где (х) – бесконечно малое при х0  ln(1+x)=x+ox, при х0; ln(1+x)~x, при х0

3) lim [(ex-1)/x]=1  (по определению конечного предела (ex-1)/x=1+(x), где (х) – бесконечно малое при х0

x0

 (ex-1)=x+(x)x, где (х) – бесконечно малое при х0  (ex-1)=x+ox, при х0; (ex-1)~x, при х0; ex=1+x+o(x), при x0

4) lim [(1-cos(x)/(x2/2)]=1  (по определению конечного предела (1-cos(x)/(x2/2)=1+(x), где (х) – бесконечно

x0

малое при х0  1-cos(x)=(x2/2)+(x)x2/2, где (х) – бесконечно малое при х0  1- cos(x)=(x2/2)+ox2; при х0; 1- cos(x)~x2/2, при х0; cos=1-x2/2+o(x2), при x0

1) lim [((1+x)p-1)/px]=1  (по определению конечного предела ((1+x)p-1)/px =1+(x), где (х) – бесконечно

x0

малое при х0  (1+x)p-1=px +(x)-p, где (х) – бесконечно малое при х0  (1+x)p-1=px+ox, при х0; (1+x)p-1~px, при х0;(1+x)p=1+p(x)+o(x), при x0

Если f(x)~g(x), при хх0 (), то lim[f(x)/g(x)]=1  f(x)/g(x)=1+(x), где (х)–бесконечно малое при хх0 ()

хх0 ()

 f(x)=g(x)+(x)g(x) f(x)=g(x)+og(x) при хх0 ()

Замечание: не всякие бесконечно малые, бесконечно большие можно сравнить.

Пример:

(x)=xsin(1/x), при х0

(х)=ф=х, при х0

(x)/(x)=sin(1/x)

lim[(x)/(x)]=lim[sin(1/x)] – который в свою очередь не существует.

x0 x0

Эти бесконечно малые несравнимы.

Для удобства формул полагают по определению, что о(1)=(х), при хх0 ()

а01 n!=123….n o!

Определение: Пусть y=f(x) определена в О(х0) и  lim f(x)=f(x0): y=f(x) при хх0 называется непрерывной в

хх

точке х0 (то есть  ε>0  >0:  xO(x0)  f(x)Oε(f(x0))

Непосредственно из определения предела следуют следуемые теоремы о непрерывных функциях.

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)+g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)+g(x) определена в О(х0)

2) lim (f(x)+g(x))=limf(x)+limg(x)=f(x)+g(x) что и требовалось доказать

хх хх хх

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)g(x) определена в О(х0)

2) lim (f(x)g(x))=limf(x)limg(x)=f(x)g(x) что и требовалось доказать

хх хх хх

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)/g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)/g(x) определена в О(х0)

2) lim (f(x)/g(x))=limf(x)/limg(x)=f(x)/g(x) что и требовалось доказать

хх хх хх

Теорема(об ограниченности непрерывной функции в окрестности точки). Пусть y=f(x) непрерывна в точки х0, тогда она ограниченна в некоторой окрестность этой точки.

Доказательство: limf(x)=f(x0), то есть  ε>0  >0 x: x-x0<  f(x)-f(x0)<ε . Предполагается, что  выбрано так, что f(x) определена в соответствующих точках. О0)О(х0). Так как это справедливо для любого ε>0, то возьмем ε=1  >0 -10)<1; xO(x0)O(x0) f(x0)-10)x, то есть В

xO(x0)O(x0)

Теорема:(о непрерывности сложной функции) Пусть y=f(x) непрерывна в точки х0, а z=g(y) непрерывна в точки y0=f(x0), тогда сложная функция имеет вид z=g(f(x0)) – непрерывна в точки х0.

Доказательство: Зададим  ε>0 в силу непрерывности z=g(y) в точки у0  б>0x: y-y0|<б g(y)-g(x0)<ε

По найденному б>0 в силу непрерывности функции f(x) в точки х0  >0 x: x-x0< f(x)-f(x0)<б

ε>0 >0 x:x-x0< y-y0<б  g(y)-g(y0)<ε g(f(x))-g(f(x0)) то есть lim g(f(x))=g(f(x0))

xx

Замечание: можно переходить к пределу под знаком непрерывной функции limf(x)=limg(y) limf(x)=f(x0)=y0 xx xx xx

Непрерывность некоторых функций.

1) y=c (постоянная) непрерывна в х0R lim c=c. Зададим ε>0 рассмотрим разность f(x)-f(x0)=c-c=0<ε

xx

 x: x-x0< (>0)!

2) y=x непрерывна в  x0R, то есть lim x=x0. Зададим ε>0 рассмотрим разность f(x)-f(x0)=x-x0<ε

xx

 x: x-x0< (>0)! =ε!

Следствие.

Многочлен p(x)=anxn+ an-1xn-1+…+a1x+a0

(an,an-1…a1,a0 – зададим число)

n=0,1,2,3…. непрерывен в любой точки х0 оси как сумма произведения непрерывной функции. Рациональная функция:

R(x)=p(x)/q(x). Частная двух многочленов непрерывна в любой точки х0 в которой q(x)0

Лекция №9

Ведущая: Голубева Зоя Николаевна

Дата: среда, 11 октября 2000 г.

Тема: «Точки разрыва»

1) Доказать, что lim [((1+x)p-1)/px]=1

x0

y=(1+x)p-1

lim [((1+x)p-1)/px]= x0  y0 =lim ([ln(1+x)]/x)([(1+x)p-1]/[pln(1+x)]=lim ([ln(1+x)]/x)

x0 (1+x)p=y+1 x0 x0

p[ln(1+x)]=ln(y+1)

lim([(1+x)p-1]/[pln(1+x)]=lim y/[ln(y+1)]=1 что и требовалось доказать  (1+x)p-1~px при x0

x0 y0 (1+x)p=1+px+o(x) при х0

2) Доказать, что lim (ex-1)/x=1

x0

y=ex-1

lim (ex-1)/x= x0  y0 =lim y/[ln(y+1)]=1 что и требовалось доказать 

x0 ex=y+1 y0

x=ln(y+1)

ex-1~x при x0

ex=1+x+o(x) при х0

Классификация точек разрыва функции.

Определение: Пусть y=f(x) определена в О(х0), а в самой точке х0 может быть как и определена, так и неопределенна.

1) Точка х0 называется точкой разрыва 1ого рода функции, если

а) Существует lim f(x)’=lim f(x)’’ , но либо функция неопределенна в точки х0 либо f(x0)b. Тогда точка х0

xx+0 xx-0

точка устранимого разрыва.


1,x=1

Y=(x-1)/(x-1)=

Не , x=1

б) f(x)=cb

Можно доопределить или переопределить в точке х0, так что она станет непрерывной.

 lim f(x)=b; lim f(x)=c, но bc

xx+0 xx-0

Может быть и определена f(x0)=b

Или f(x0)=d

2 )Точка х0 называется точкой разрыва 2ого рода функции если она не является точкой разрыва 1ого порядка, то есть если хотя бы один из односторонних пределов не существует или равен бесконечности.

y=sin(1/x)

Основные теоремы о непрерывных функциях.

Теорема: Все основные элементы функции непрерывны в любой точки своей области определения.

Определение: (функции непрерывной на отрезке)

y=f(x) – называется непрерывной на отрезке [a,b], если она непрерывна в любой точке х(a,b). В точке х=а функция непрерывна справа, то есть lim f(x)=f(a), а в точке х=b функция непрерывна слева lim f(x)=f(b).

xx+0 xx-0

Функция непрерывна на множестве D если она непрерывна в этой точке.

Теорема: (о сохранение знака непрерывной функции)

Пусть y=f(x) непрерывна в точке х0 и f(x0)>0 (f(x0)<0), тогда f(x)>0 f(x)<0 непрерывна в некоторой точки О(х0)

Доказательство:  lim f(x)=f(x0) ε>0  >0 x: x-x0<  f(x)-f(x0)|<ε.

xx

Пусть f(x0)>0, выберем ε=f(x0)  f(x)-f(x0)0) xO(x0) (>0!)

-f(x0)0)0); f(x)>0 xO(x0), если f(x0)<0, то ε=-f(x0)

Теорема Коши: ( о нуле непрерывной функции)

Пусть f(x) непрерывна на [a,b] и на концах его принимает значение разных знаков f(a) f(b) <0, тогда  x0(a,b): f(x0)=0

Доказательство:

f(b)>0 f(a)<0

Разделим отрезок [a,b] пополам. Если в середине отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину отрезка, на концах которой функция принимает значение разных знаков. Выбранной отрезок поделим пополам. Если в середине нового отрезка f(x)=0, то всё доказано, если нет, то выберем ту половину от той половины, на концах которой функция принимает значение разных знаков и т.д.

[a,b][a1,b1][a2,b2]

Последовательность левых концов удовлетворяет отношению a12<…n<…

bb1b2…bn…>a 

{ an}-ограниченная не убывающая  lim an=b f(a)<0 f(an)<0 n

x+ [anbn]=(b-a)/2n 0 при n

{bn}-ограниченная не возрастающая  lim bn= f(b)>0 f(bn)>0 n

x+

В силу непрерывности функции lim f(an)=f (lim bn)=f()0 lim (bn-an)=-= lim (b-a)/2n=0=

x+ x+ x+ x+

f()0

 f()=0 x0=

f()=f()0

Условие непрерывности функции нельзя отбросить: f(b)>0; f(a)<0

Теоремы Вейштрасса.

1) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Тогда она ограниченна на нём.

Замечание: а) Условие непрерывности нельзя отбросить

Неограниченна сверху  неограниченна


б) Нельзя заменить отрезок на интервал или

полуинтервал.

Непрерывна на (0;1]

2) Теорема: Пусть функция y=f(x) непрерывна на отрезке [a,b]. Среди её значений есть наибольшее и наименьшее.

Замечание: а) Множество [0;1] наибольшее значение 1М

наименьшее значение 0  М

б) Множество (0;1]=М наибольшее значение 1М

нет наименьшего

в) Множество [0;1)=M нет наибольшего

наименьшее значение 0  М

г) Множество (0;1)=М нет ни того не другого.

Условие отрезка нельзя заменить на интервал или полуинтервал.

x(0;1] непрерывна на (0;1] нет наибольшего значения

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее