PRAY (Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения)

2016-07-31СтудИзба

Описание файла

Документ из архива "Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "PRAY"

Текст из документа "PRAY"

Интеграл по комплексной переменной.

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной , используя параметрическое задание кривой С зададим tи (t), где иявляются кусочно-гладкими кривыми от действительной переменной t. Пусть <= t<=причем и могут быть бесконечными числами .

Пусть и удовлетворяют условию : [‘(t)]2 + [‘(t)]2  0. Очевидно, что задание координат  =tи (t), равносильно заданию комплексной функции  (t)= (t) i(t).

Пусть в каждой точке  (t) кривой С определена некоторая функция f ( ). Разобьем кривую С на n – частичных дуг точками деления 0 , 1 , 2 , …, n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.

 i = i –  i-1. Составим интегрируемую функцию S = f (*) i . (1)
где *– производная точки этой дуги.

Если при стремлении max | i | 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек  i , то этот предел называется интегралом от функции f ( ) по кривой С.

(2)

f (i* ) = u (Pi*) + iv (Pi*) (3)

где  i = (t) i(t) ((t) и(t) - действительные числа)

Подставив (3) в (1) получим :


(4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при  и  0 и предполагая, что данные пределы существуют, получаем :


(5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f ( ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :










О
ограниченности интеграла.

П
ри этом z = ( ).

7.) Пусть Cp – окружность радиуса , с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp :  = Z0 + ei, 0   2, d = iei d .

К
усочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.

ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :

Д
ля действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:


( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Т
.к. f( ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:

А

налогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :



ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f() является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

П усть f () является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f () непрерывна в замкнутой области G, тогда :


, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.

Неопределенный интеграл.

С
ледствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)

Это аналог формулы Ньютона-Лейбница.

Интеграл Коши. Вывод формулы Коши.

Р анее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

П
усть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур  с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и . Согласно теореме Коши имеем :

По свойствам интегралов :

(2 )

Т ак как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве  окружность  с радиусом  . Тогда:

(3)

Уравнение окружности  :  = Z0 + ei (4)

Подставив (4) в (3) получим :


( 5 )


( 6 )


(7)

У стремим  0, т.е.  0.

Тогда т.к. функция f() аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех >0 существует >0, что для всех  из –окрестности точки Z0 выполняется | f() – f(Z0) | < .




(8)

Подставив ( 7) в ( 6) с учетом ( 8) получаем :

П
одставляя в ( 5) и выражая f(Z0) имеем :

(9)

Э то интеграл Коши.

Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f() в некоторой точке Z0 через ее значение на произвольном контуре  , лежащем в области аналитичности функции f() и содержащем точку Z0 внутри.

Очевидно, что если бы функция f() была аналитична и в точках контура С, то в качестве границы  в формуле (9) можно было использовать контур С.

Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :

П
ри Z0  Г указанный интеграл не существует.

Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования  и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных  (Z,  ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. = + i  С. (С - граница G).

Взаимное расположение области и кривой произвольно. Пусть функция  (Z,  ) удовлетворяет условиям : 1) Функция для всех значений  С является аналитической в области G. 2) Функция  (Z,  ) и ее производная  являются непрерывными функциями по совокупности переменных Z и  при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :

И
нтеграл существует и является функцией комплексной переменной. Справедлива формула :

(2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :


(3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.

Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :

Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:

(2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |

Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.

(3)

(4)

(5)

Причем | Z | < R, R  .

Формулы ЭЙЛЕРА.

Применим разложение (3) положив, что Z = ix и Z= - ix;

(6)

Аналогично взяв Z = - ix получим :

(7)

Из (6) и (7) можно выразить т.н. формулы Эйлера :

(8)

В общем случае :

(9)

Известно, что :

(10)

Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:

Ряд ЛОРАНА.

Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.

ТЕОРЕМА 1.

Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.

Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.

Возьмем в круге радиуса r точку Z, а на границе области точку , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :

(13)

(11)

Поскольку

, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :

(12)

Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2i) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :

Обозначая , получим : (14)

Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)

ТЕОРЕМА 2.

Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :

(16)

где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :

(18)

ТЕОРЕМА 3.

Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |

(19)

f1 и f2 можно представить в виде двух рядов :

(20)

(21)

Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.

f1(Z) – правильная часть.

f2(Z) – главная часть ряда Лорана.

Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.

Классификация изолированных особых точек. Вычеты.

Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка Z=Z0  G в которой аналитичность функции f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :

  1. Устранимые особые точки. Ими называются особые точки, для которых существует , где А – конечное число.

  2. Если для особой точки существует предел , то такая особая точка называется полюсом.

  3. Если не существует, то точка Z=Z0 называется существенной особой точкой.

Если С-n=0, то особая точка есть устранимая особая точка.

Пусть f(Z0)=C0 и C-n для всех n=1,2,3,..,m отличного от 0, а для всех n  m+1 C-n=0, тогда Z=Z0 будет являться полюсом порядка m.

При m>1 такой полюс будет называться простым.

, если m  , то в этом случае в точке Z=Z0 имеем существенную особенность.

Определение 2. Вычетом функции f(Z) в круге |Z-Z0| , где L – ориентированный против часовой стрелки контур целиком расположенный в круге радиуса R, содержащем Z0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен первому коэффициенту ряда главной части Лорана :

Если полюс имеет кратность m  1, то для определения вычетов используется формула :

(3)

при m=1 :

Основная теорема о вычетах.

Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak.  –произвольный, кусочно-гладкий замкнутый контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2i :

(5)

Пример :

Найти вычет

Особые точки : Z1=1, Z2= - 3.

Определим порядок полюсов – все полюсы первого порядка.

Используем формулу (3) :

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее