न1 (Интеграл Пуассона)

2016-07-31СтудИзба

Описание файла

Документ из архива "Интеграл Пуассона", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "न1"

Текст из документа "न1"

Интеграл Пуассона.

Пусть x , g(x) , xR1 –суммируемые на -,  , 2- периодические, комплекснозначные функции. Через fg(x) будем обозначать свертку

fg(x) = dt

Из теоремы Фубини легко следует, что свертка суммируемых функций также суммируема на -, и

cn ( fg ) = cn ( f ) cn ( g ) , n = 0, 1 , 2 , ... ( 1 )

где  cn ( f ) -- коэффициенты Фурье функции f ( x ) :

cn = -i n tdt , n = 0, 

Пусть  L1 (-) . Рассмотрим при   r  функцию

r ( x ) = n ( f ) rn ei n x , x  , ( 2 )

где ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r ,  r  . Коэффициенты Фурье функции r х равны

cn ( fr ) = cn  r n  , n = 0 , , а это согласно (1) значит, что r  x  можно представить в виде свертки :

r ( x ) = , ( 3 )

где

, t   ( 4 )

Функция двух переменных Рr (t) , 0 r , t   , называется ядром Пуассона , а интеграл (3) -- интегралом Пуассона .

Следовательно,

Pr ( t ) = , 0r   , t  . ( 5 )

Если  L ( -  )  действительная функция , то , учитывая , что

c-n ( f ) = cn( f ) , n = 0 из соотношения (2) мы получим :

fr ( x ) =

= , ( 6 )

где

F ( z ) = c0 ( f ) + 2 ( z = reix ) ( 7 )

  • аналитическая в единичном круге функция . Равенство (6) показывает, что для любой действительной функции  L1( -,  ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция

u ( z ) = r (eix ) , z = reix , 0  r 1 , x  [ -,  ] .

При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой

v (z) = Im F (z) = . ( 8 )

Утверждение1.

Пусть u (z) - гармоническая ( или аналитическая ) в круге  z     функция и  (x) = u (eix) , x,   . Тогда

u (z) = ( z = reix ,  z    ) ( 10 ).

Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:

= ,  z   +  .

Но тогда

и равенство (10) сразу следует из (2) и (3).

Прежде чем перейти к изучению поведения функции r (x) при r , отметим некоторые свойства ядра Пуассона:

а) ;

б) ;

в) для любого >0

Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3)  х  .

Теорема 1.

Для произвольной (комплекснозначной) функции ( -,  ) , 1  p <  , имеет место равенство

;

если же  (x) непрерывна на [ -,  ] и  (-) =  () , то

.

Доказательство.

В силу (3) и свойства б) ядра Пуассона

( 12 )

Для любой функции , пользуясь неравенством Гельдера и положительностью ядра Пуассона , находим

.

Следовательно,

.

Для данного    найдем  =  () такое, что . Тогда для r , достаточно близких к единице, мы получим оценку

.

Аналогично второе неравенство вытекает из неравенства

.

Теорема 1 доказана.

Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.

Определение1.

Пусть функция суммируема на любом интервале (-А, А), А > 0 . Максимальной функцией для функции называется функция

где супремум берется по всем интервалам I , содержащим точку х.

Определение 2.

Оператор называется оператором слабого типа (р,р) , если для любого y > 0

.

Теорема 2 (Фату).

Пусть - комплекснозначная функция из . Тогда

для п.в. .

Доказательство.

Покажем, что для и

, ( 13 )

где С - абсолютная константа , а M ( f, x ) - максимальная функция для f (x) 1. Для этой цели используем легко выводимую из (5) оценку

(К - абсолютная константа).

Пусть - такое число, что

.

Тогда для

.

Неравенство (13) доказано. Используя затем слабый тип (1,1) оператора , найдем такую последовательность функций ,что

,

( 14 )

для п.в. .

Согласно (13) при x (-2)

Учитывая , что по теореме 1 для каждого x [- ] и (14)

Из последней оценки получим

при n.

Теорема 2 доказана.

Замечание.

Используя вместо (13) более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. x [- ] , когда точка reit стремится к eix по некасательному к окружности пути.

1 Мы считаем , что f (x) продолжена с сохранением периодичности на отрезок 22 (т.е.
f (x) = f (y) , если x,y  [-2,2] и x-y=2) и f (x) = 0 , если x   .

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее