134114 (Задачи Пятого Турнира Юных Математиков)

2016-07-31СтудИзба

Описание файла

Документ из архива "Задачи Пятого Турнира Юных Математиков", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "134114"

Текст из документа "134114"

УЗШ «Эрудит»

Реферат

по теме

«Задачи Пятого Турнира Юных Математиков»

ученика 10го класса

Гончаренко Никиты

Предисловие

Настоящий реферат рассматривает решения задач некоторых задач отборочного этапа Пятого Всеукраинского турнира юных математиков (проводившегося г. Сумы). В кратком условии участия было отмечено, что «предлагаемые задачи достаточно сложны и необязательно должны быть решены полностью. Оцениваться будут и отдельные продвижения и разбор частных случаев. В некоторых случаях можно решить аналогичную или более простую задачу». Данный реферат имеет несколько не доведенных до конца задач, либо решенных частично. Также приведены некоторые задач финального тура.

«Геометрические миниатюры»

Условие: Зафиксируем на плоскости АВС и обозначим через SL, SM, SK площади треугольников, вершинами которых есть, соответственно, основания биссектрис, медиан и точек касания вписанной окружности. Доказать, что .

Решение

Решение задачи разобъем на четыре этапа:

  1. Докажем, что

  2. Докажем, что

  3. Докажем, что

  1. Из этапов (2) и (3) ясно, что , поэтому докажем, что

Этап 1: Найдем отношение площади треугольника, вершинами которого являются точки касания вписанной окружности, к площади данного треугольника АВС.

Пусть окружность касается сторон АВ, ВС и АС соответственно в точках P, S и Q. Обозначим отрезки AP, CQ и BS как x, y и z соответственно. Тогда из «отрезки касательных, проведенных из одной точки равны», следует, что AC = AQ = x, CQ = CS = y, BS = BP = z.

Составим и решим систему.


Найдем отношение площади PSQ к площади АВС через разность площадей S PSQ = S АВС – (S APQ + S CQS + S BPS).

Аналогично,

и

Тогда из S PSQ = S АВС – (S APQ + S CQS + S BPS) 

Подставим значения

Раскрыв скобки, выражение можно записать как

Длины сторон треугольника всегда положительны, значит используем неравенство Коши: . Аналогично, для трех чисел:

Подставим неравенства в числители дробей

.

Итак, отношение площади треугольника PSQ (по условию - Sk) , вершинами которого являются точки касания вписанной окружности, к площади данного треугольника АВС: .

Этап 2: Найдем отношение площади треугольника, вершины которого – основания биссектрис данного треугольника, к площади данного треугольника АВС.

Пусть АН, BG, CF – биссектрисы АВС, тогда FGH – искомый треугольник. Найдем отношение площадей данного треугольника и FGH.

О бозначим AF = x, BH = y, CG = z. По свойству биссектрис («биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам»), тогда

Значит,

По аналогии с предыдущей задачей найдем отношение FBH, HCG, FAG к площади ABC.

Аналогично,

и .

Тогда

Упростив это выражение, получаем .

Теперь, из неравенства Коши ( )  .

Итак, отношение площади треугольника FHG (по условию - Sl), вершины которого – основания биссектрис данного треугольника, к площади треугольника АВС - .

Этап 3: Найдем отношение площади треугольника, образованного основаниями медиан, к данному треугольнику ABC.

Проведем из вершин АВС медианы, пересекающие стороны АВ, ВС и АС соответственно в точках E, R и T.

Рассмотрим AERT.

RT, по свойству средней линии равен половине АЕ и АЕRT.

ER=AT и ERAT по этим же признакам  AERT – параллелограмм.

Значит EAT=ERT (*) – по свойству параллелограмма.

Аналогичным образом рассмотрим параллелограммы ERCT, BETR. Из них  RET = RCT, RBE = ETR (**).

Из (*) и (**)  ERT подобен АВС при (по свойству средней линии). По свойству «площади подобных фигур относятся как квадраты коэффициентов подобия», .

Итак, отношение площади треугольника (по условию SK), образованного основаниями медиан, к площади данного треугольника АВС - .

Этап 4: докажем, что .

В процессе решения задачи данный этап был разрешен, но найденное решение оказалось крайне не рациональное и очень объемное, поэтому здесь не приведено.

Значит, действительно, площадь треугольника, образованного основаниями медиан больше площади треугольника, образованного основаниями биссектрис, который больше площади треугольника, образованного точками касания вписанной окружности. ЧТД.

Задача 1 Финального тура

Условие: Решить уравнение xy2 + xy + x2 – 2y – 1 = 0 в целых числах.

Решение

Представим исходное уравнение в виде:

Из этого следует, что х – делитель 2у+1. Введем замену: 2у+1 = kx, где k. Тогда

Т.к. ищем решения в целых числах, из этого равенства видно, что k – число нечетное.

П
одставим значения в преобразованное уравнение.

Введем замену: х1 = -х. Тогда полученное уравнение примет вид .

Решим данное уравнение относительно х1 (очевидно, что ).

  1. Рассмотрим случай, когда k = 1.

    Отсюда, х = 1 или х = = -5, тогда y = 0 или у = -3;
    Ответ: (1;0), (0;-3);

  2. Рассмотрим случай, когда k = -1.

    Отсюда, х = -1 или х = ­­ = -3, тогда у = 0 или у = 1;
    Ответ: (-1;0), (-3;1);

  3. Рассмотрим случай, когда k = 3.
    Отсюда у = -14.
    Ответ: (-9;-14)

  4. Рассмотрим случай, когда k = -3.
    - нет решений в области целых чисел.

Итак, в результате вышеописанных вычислений были найдены следующие решения: (1;0), (0;-3), (-1;0), (-3;1), (-9;-14).

Cумма производных

Условие: Пусть

.

Доказать, что для нечетных - число четное, а для четных - число нечетное.

Решение

Рассмотрим производные P(x):

Далее замечаем, что . Рассмотрим это число:

  1. n = 2k..
    4k2(2k-1) – это число четное.

  2. n = 2k+1.
    2k*(2k+1)2 – также число четное.

Отсюда следует, что - число четное при любых допустимых значениях n. Значит,

, как сумма четных чисел, число четное.

Введем некоторую функцию F(x).

Рассмотрим возможные случаи для х:

  1. х – число четное

- число нечетное,

- число четное  F(x) – нечетное.

Значит, -нечетное число, ЧТД.

  1. х – число нечетное

  1. n – нечетное
    - число четное,

- при четном х – четное, значит сумма четна  F(x) – четное.

  1. n – четное

- число нечетное,

- при четном х – четное, значит сумма нечетна  F(x) – четное.

Значит, при любом нечетном х, всегда F(x) будет четной при любом (четном/нечетном) значении n 

- четное ЧТД

В результате рассмотренных выше случаев, выводим, что для нечетных - число четное, а для четных - число нечетное.

ЧТД.

Необычное уравнение

Условие: Для m натуральных через P(m), обозначается произведение всех цифр его десятичной записи, а через S(m) – их сумма. Найти количество k(n) решений уравнения

при n = 2002. Исследуйте величину k(n) решений уравнения.

Решение

Рассмотрим различные случаи числа x.

Пусть в записи х есть ноль, тогда P(x) = 0, значит

Пусть S(x)=y, S(x) = n и в записи числа есть ноль, тогда

Значит, P(S(x)) = P(y) = 0, т.к. число содержит ноль.

S(S(x))=S(y)=n. Имеется бесконечно много решений.

Т.е. для решения данного уравнения подходят числа, S(S(x)) которых равна n.

Т.к. решений бесконечно много, то имеем множество решений для любых случаев.

Идем от обратного: S(y)=n где, a+b+c+…+f = n, т.е. от перестановки цифр сумма не меняется.

При n = 2002, S(x) = 4, P(S(x)) = 4, S(S(X)) = 4 – .

Рассмотрев решения для данного случая, убеждаемся, что n можно подобрать относительно х или наоборот.

Задание 6 Финального Тура

Найти все функции , для которых выполняется

Решение

Пусть х = 1.

. Заменим f(y) на а, имеем:

. (*)

Проверим полученную функцию.

y = 1, тогда

Теперь подставим в исходную функцию.

Значит, одно из возможных значений функции - .

Математический Анализ

Условие: Рассматриваются различные непрерывно дифференцируемые функции (это значит, что для произвольного , существует ), причем функция g непрерывна на сегменте [0;1]; под произодными функции f в конечных точках сегмента [0;1] считаются конечные производные соответственно), для которых f(0)=f(1)=0 и . Охарактеризовать множество всех точек, координатной плоскости xOy, через которые могут проходить графики всех функций.

Решение

И
спользуем неравенство Коши-Буняковского для определенного интеграла, но, прежде, распишем определенный интеграл:

Распишем, также, формулу Ньютона-Лейбница:

.

Итак,

Значит .

Значит, .

Тогда, .

, т.к. (по условию).

Рассмотрим два случая:

  1. y
    2 = x – x2 (точка лежит на контуре)

Т.е. графиком данной функции будет произвольная кривая, в которую вписан угол (угол OMK = 900)

ПРОТИВОРЕЧИЕ !!!

Т.е. всегда можно построить гладкую кривую, проходящую через точку Х.

Бесконечные Биномиальные Коэффициенты

Условие: упростить выражение .

Решение

Отметим, что если n – четное, что количество членов ряда нечетно, а если n – нечетно, то их количество четно.

Рассмотрим четные и нечетные n.

  1. n = 2k + 1 – нечетное

Тогда, ряд будет иметь вид:

.

Зная, что , упростим этот ряд.

.

Видим, что равноудаленные от концов ряда члены сокращаются, и, т.к. количество их четно, следовательно сумма ряда рана нулю.

, при n = 2k + 1.

  1. n = 2k

Этот случай не был решен до конца, но в результате расчетов первых четных чисел была выведена и проверена, однако не доказана, формула

, где n – четное.

Работа Гончаренко Никиты,

Г. Краматорск, ОШ#35

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее