XVI.Теория вероятности (наш учебник) (932345), страница 22
Текст из файла (страница 22)
Его решение имеет вид ш Ьг аг 2(1пЬ вЂ” 1па) 158 4. ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Нетрудно проверить, что при фиксированных значениях а и Ь, в силу условия О < а < Ь < +со справедливы соотношения Р(а < Х < Ь) = Фо( ) Фо(-) — +О Ь а Р1а <Х <Ь) =Фо( — ) Фо( ) — + О. Позтому вероятность Р(а < Х < Ь) при (Ь2 2) 2(1п Ь вЂ” 1па) принимает максимальное значение. Вопросы и задачи 4.1. Дайте определение случайной величины. 4.2. Что называют законом распределения (вероятностей) случайной величины? 4.3.
Дайте определение функции распределения (вероятностей). Перечислите и докажите свойства функции распределе- 4.4. Как, зная функцию распределения, найти вероятность попадания случайной величины в заданный интервал? 4.5. Какие свойства должна иметь некоторая функция для того, чтобы она могла быть функцией распределения? 4.6. Какую случайную величину называют дискретной? Приведите примеры дискретных случайных величин.
4.7. Что называют рядом распределения дискретной случайной величины? Как еще можно задать закон распределения дискретной случайной величины? Волросм иэалачя 159 4.8. Какой вид имеет функция распределения дискретной случайной величины? 4.9. Какое распределение называют биномиальным? 4.10. Какое распределение называют распределением Пуассона? 4.11.
Какое распределение называют геометрическим распределением? 4.12. Какую случайную величину называют непрерывной? Приведите примеры непрерывный случайных величин. 4.13. Дайте определение плотности распределения (вероятностей). Перечислите и докажите свойства плотности распределения. Существует ли плотность распределения у дискретной случайной величины? 4.14. Как, зная плотность распределения, найти вероятность попадания случайной величины в заданный интервал? 4.15. Чем различаются графики функций распределения дискретной и непрерывной случайных величин? 4.18. Какое распределение называют равномерным? 4.17.
Какое распределение называют экспоненциальным (показательным)? 4.18. Какое распределение называют нормальным? 4.19. Как выглядит график плотности нормального распределения? 4.20. Что называют интегралом Лапласа? Как, пользуясь таблицей значений интеграла Лапласа, вычислить вероятность попадания нормально распределенной случайной величины в некоторый интервал? 4.21. Какое распределение называют распределением Вейбулла? 160 4. ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 4.22.
Какое распределение называют гамма-распределением? 4.23. Из партии в 10 деталей, среди которых две бракованные, наудачу выбирают три детали. Найдите закон распределения числа бракованных деталей среди выбранных. Постройте функцию распределения. Ответ: 4.24. Вероятность приема самолетом радиосигнала при каждой передаче равна 0,7. Найдите ряд распределения и функцию распределения числа Х принятых сигналов при шестикратной передаче. Ответ: Ряд распределения и функцию распределения случайной величины Х легко построить, зная, что Р(Х = з) = =Со1(0,7)'(0,3)о ', 4 =0,6. 4.25.
Найдите закон распределения случайной величины Х вЂ” числа таких бросаний трех игральных костей, в каждом из которых ровно на двух костях появится по 2 очка, если общее число бросаний равно 15. Ответ: Р(Х=з)=С11зр'Чы ', 4=0,15, где р=Сз(1/6)~(5/6) = = 5/72 я~ 0,0694. 4.26. В течение часа на станцию скорой помощи поступает случайное число Х вызовов, распределенное по закону Пуассона с параметром Л = 5. Найдите вероятность того, что в течение часа поступит: а) ровно два вызова; б) не более двух вызовов; в) не менее двух вызовов. О, С.Сз-с 7/15 Р(Х з) зз 4=0,1,2; Р(х) = С1зо 14/15 1, х<0; х Е (О, 1]; х Е (1, 2]; х > 2.
161 Вопросы и задачи Ответ: а) Р1Х =2) =5эе ~/2! 0,086; б) Р(Х < 2) = (5о/О! + 51/1! + 5э/2!)е а - 0,127; в) Р1Х ) 2) = 1 — Р1Х < 2) = 1 — (5е/О!+ 51/1!)е ~ 0,041. 4.27. Число вызовов, поступающих на АТС (автоматическая телефонная ставция) каждую минуту, распределено по закону Пуассона с параметром Л = 1,5. Найдите вероятность того, что за минуту поступит: а) ровно три вызова; б) хотя бы один вызов; в) менее пяти вызовов. Ответ: а) 0,12551; б) 0,77687; в) 0,98143.
4.28. В приборный отсек космического корабля за время полета попадает случайное число частиц, распределенное по закону Пуассона с параметром Л, причем вероятность попасть в блок управления, расположенный в отсеке космического корабля, для каждой иэ этих частиц равна р. Определите вероятность попадания в блок: а) ровно й частиц; б) хотя бы одной частицы. Ответ: а) (Лр)"е "и/й!; 6) 1 — е ~'з. 4.29. По цели производят серию независимых выстрелов до первого попадания.
Даны вероятность р попадания в цель при одном выстреле и запас патронов и. Найдите ряд распределения и функцию распределения числа Х израсходованньп~ патронов. рд' ', з'=б;и:Т (9=1-р); Ответ: Р1Х =з) = ! 9 ~ Ф=п. 4.30. Летательный аппарат, по которому ведется стрельба, состоит из двух различных по уязвимости частей. Аппарат выходит из строя при одном попадании в первую часть или трех попаданиях во вторую.
Стрельба ведется до поражения летательного аппарата. Постройте ряд распределения и функцию 6 — той 162 4. ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ распределения числа попаданий Х в летательный аппарат, которое понадобится для его поражения, если каждый попаюпий в аппарат снаряд с вероятностью 0,3 поражает первую часть и с вероятностью 0,7 — вторую. О т в е т: Р(Х = 1) = 0,3; Р [Х = 21 = 0,21; Р(Х = 3) = 0,49.
4.31. Непрерывная случайная величина Х распределена по экспоненцизльному закону с параметром А = 0,2. Найдите вероятность попадания этой случайной величины в интервал (О, 2). Ответ: 1 — е е4 я~ 0 33. 4.32. Длительность времени Х безотказной работы элемента имеет экспоненцизльное распределение с параметром Л = = 0,02 ч 1. Вычислите вероятность того, что за время $ = 100 ч элемент: а) выйдет из строя; б) будет исправно работать. Ответ: а) 1 — е з ж0,865; б) е з 0,135. 4.33. Случайная величина Х имеет нормальное распределение с параметрами гп = 2 и и = 1. Определите вероятность попадания случайной величины в интервал (1, 5).
Ответ: 0,83999. 4.34. Случайная величина Х распределена по нормальному закону с параметрами т = 4 и и = 1. Определите вероятность попадания случайной величины Х в интервал (6, 8). Ответ: 0,0227. 4.35. Случайная величина Х имеет нормальное распределение с параметрами т и и. Вычислите вероятность попадания случайной величины в интервал (пз — 4о', т). Ответ: 0,499971. 4.36.
Случайная величина Х подчинена нормальному закону распределения с тп = О. Вероятность попадания случайной величины в интервал (-0,3, 0,3) равна 0,5. Найдите среднее квадратичное отклонение и. Ответ: о 0,44. 153 Воиросьг и задачи 4.3Т. Измерительный прибор имеет систематическую погрешность 5 м. Случайные погрепности подчиняются нормальному закону со средним квадратическим отклонением, равным 10 м. Какова вероятность того, что погрешность измерения не превзойдет по абсолютному значению 5 м? Ответ: 0,3413.
4.38. Измерение дальности до объекта сопровождается случайными погрешностями, подчиняющимися нормальному закону со средним квадратичным отклонением, равным 50 м. Систематическая погрешность отсутствует. Найдите: а) вероятность измерения дальности с погрешностью, не превосходящей по абсолютному значению 100 м; б) вероятность того, что измеренная дальность не превзойдет истинной. Ответ: а) 0,9545; б) 0,5. 4.39.
Высотомер имеет случайную и систематическую погрешности. Систематическы погрешность равна 20 м. Случайная погрешность распределена по нормальному закону. Какую среднюю квадратичную погрешность должен иметь прибор, чтобы с вероятностью 0,9452 погр~пность измерения высоты бь|ла меньше 10 му Ответ: 50 м. 4.40. Случайны величина Х распределена по нормальному закону с математическим ожиданием пз и средним квадратичным отклонением о. Определите абсциссы и ординаты точек перегиба кривой плотности распределения. Ответ: шло; е 1~з/(а~(2~г). 4.41. Нормально распределенная случайная величина Х имеет математическое ожидание, равное нулю.
Найдите среднее квадратичное отклонение а,при котором вероятность попадания случайной величины в интервал (5, 10) была бы наибольшей. О: = ~/75Д2) 2). 164 4. ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ 4.42. Время Х (в часах) безотказной работы электрической лампочки имеет распределение Вейбулла с параматрами а = = 0,02 и ~3 = 0,5. Определите вероятность того, что лампочка проработает не менее 10000 ч. Ответ: Р(Х ) 100001 =е ~Ли~сесе -0,14. 4.43. Время Х (в месяцах) безотказной работы некоторой системы, состоящей из одного основного и двух резервных элементов, имеет гамма-распределение с параматрами у = 3 и А = 0,05. Найдите вероятность того, что система проработает не менее 5 лет.
О т в е т: Р 1Х ) 60) = е з(1+ 3 = Зз/2) и 0,42, 5. МНОГОМЕРНЫЕ СЛ'У ЧАЙНЫЕ ВЕЛИЧИНЫ В прикладных задачах обычно приходится рассматривать не одну случайную величину, а несколько случайных величин, одновременно измеряемых (наблюдаемых) в эксперименте. При этом с каждым элементпарным всходом ат е Й бывает связан набор числовых значений некоторых количественных параметров. В этой главе мы обобщим ранее полученные результаты на совокупность из нескольких случайных величин, задзвных на одном и том же веролптностпном простпранстпве. 5.1. Многомерная случайная величина.
Совместная функция распределения Определение 5.1. Совокупность случайныя величин Хт = Хт(от), ..., Х„= Х„(ы), заданных на одном и том же веролтпностпном простпранстпве (Й,З,Р), называют многомерной (и-мерной) случайной величиной или тт-мерным случайным еектпором. При этом сами случайные величины Хт, Хт,, Х„называют коордннатптьнн случайного вектпора. В частности, при и = 1 говорят об одномерной, при и = 2 — двумерной с.аучайной еелнчнне (или двумерном случайном вектпоре). Для и-мерного случайного вектора воспользуемся обозначе. пнями (Хм ..., Х„) и Х = (Хт, ..., Х„). В случае двумерных и трехмерных случайных векторов наряду с обозначениями (Хм Хз) и (Хы Хг, Хз) будем испольэовать также обозначения (Х, У) и (Х, У, Я).