Главная » Просмотр файлов » Вопросы на три (Alex.BiT & Рома Edition)

Вопросы на три (Alex.BiT & Рома Edition) (987495), страница 7

Файл №987495 Вопросы на три (Alex.BiT & Рома Edition) (Вопросы на три - Сборник основных понятий) 7 страницаВопросы на три (Alex.BiT & Рома Edition) (987495) страница 72015-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Таблица 1. — Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении

α//·106, град-4

α·106, град-4

Олово

30,5

15,5

Кварц

13,7

7,5

Графит

28,2

—1,5

Теллур

—1,6

27,2

Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии // и перпендикулярно ей .

Таблица 2. — Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)

Магний

//·106, ом·см

ом·см

3,37

4,54

Цинк

5,83

5,39

Кадмий

7,65

6,26

Олово (белое)

13,13

9,05

При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая А.). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца, рубина и кальцита) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n// и перпендикулярно ей n равны: n// = 1,64 и n = 1,58; у кварца: n// = 1,53, n = 1,54.

Механическая А. состоит в различии механических свойств — прочности, твёрдости, вязкости, упругости — в разных направлениях. Количественно упругую А. оценивают по максимальному различию модулей упругости. Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).

Таблица 3. — Главные значения модулей упругости некоторых кубических кристаллов

Алмаз

95

39

49

Алюминий

10,8

6,2

2,8

Железо

24,2

14,6

11,2

Для кристаллов более сложной структуры (более низкой симметрии) полное описание упругих свойств требует знания ещё большего числа значений (компонент) модулей упругости по разным направлениям, например для цинка или кадмия — 5, а для триглицинсульфата или винной кислоты — 13 компонент, различных по величине и знаку. Об А. магнитных свойств см. подробнее в статье Магнитная анизотропия.

Математически анизотропные свойства кристаллов характеризуются векторами и тензорами, в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество) является вектором. Электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость и теплопроводность тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество) тензор третьего ранга, упругость тензор четвёртого ранга. А. графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2—5).

Поликристаллические материалы (металлы, сплавы), состоящие из множества кристаллических зёрен (кристаллитов), ориентированных произвольно, в целом изотропны или почти изотропны. А. свойств поликристаллического материала проявляется, если в результате обработки (отжига, прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает А. (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15—20% (до 65%).

Причиной естественной А. является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы). А. может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная А. некоторых жидкостей, особенно А. жидких кристаллов. В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.

А. наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм2. Искусственную А. можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём А., которая влечёт за собой упрочнение стекла.

Искусственная оптическая А. возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон—Мутона эффект), механического воздействия (см. фотоупругость).

М. П. Шаскольская.

А. широко распространена также в живой природе. Оптическая А. обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.

В ботанике А. называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.

Р
ис. 1.2.1. Зависимость энтропии вещества от температуры



Методы выращивания диэлектрических лазерных кристаллов из расплава



1) методы с малым объемом расплава (методы Вернейля и зон­ной плавки и т.п.);

2) методы с большим объемом расплава (методы Киропулоса, Чохральского, Стокбаргера, Бриджмана и т.п.).

. Основным критерием применимости контейнерных методов является отсутствие взаимной растворимости и химического взаимодействия кристаллизуемого вещества и материала контейнера.

К материалу контейнера предъявляются следующие требования: достаточная меха­ническая прочность, обрабатываемость материала, близость коэффи­циентов расширения (сжатия) материала контейнера и кристаллизуе­мого вещества, определенная величина электропроводности (в случае высокочастотного нагрева) и возможность предварительной очистки стенок контейнера химическими или другими методами.

Метод Вернейля



Р ис. 11.1.3. Схема установки для выращивания монокристаллов по газоплазменному методу Вернейля: 1 - бункер, 2 - вход и выход воды для охлаждения сопла; 3 -огнеупорное покрытие; 4, 5 - квар­цевые трубки; 6 - водоохлаждаемое сопло; 7 - зона плазменного разря­да; 8 – индуктор; 9 - затравка; 10 – кристаллизатор.



Метод является бесконтейнерным, в результате чего снимаются. проблемы физико-химического взаимодействии расплава с материа­лом контейнера, а также проблема возникновения остаточных напря­жений из-за упругого .воздействия стенок контейнера.

Метод дает возможность проведения кристаллизации в области порядка 2300 К на воздухе, причем окислительно-восстановитель­ный потенциал атмосферы кристаллизации регулируется за счет из­менения относительного содержания кислорода и водорода в пламени.

Метод обеспечивает техническую простату проведения процесса и доступность наблюдения за ростом кристаллов.

Метод дает возможность быстрого получения достаточно боль­ших кристаллов.

Однако имеются и определенные недостатки, к которым следует отнести:

1. Трудность подбора оптимального соотношения между скоро­стью опускания затравки, подачей шихты и расходов рабочих газов.

2. Возможность попадания в расплав примесей из рабочих газов, поскольку расход их весьма значителен (О2-0,7 м3 /ч, Н2-— 1,5- 2 м3/ч), а также из воздуха и керамики кристаллизатора.

3. Наличие больших высоких температурных градиентов в зоне кристаллизации (30-50 град/мм), способствующих возникновению в кристаллах внутренних напряжений (до 10 -15 кг/мм2).

4. Невысокое качество получаемых кристаллов вследствие не­равномерности подачи исходной шихты, дестабилизации процесса го­рения, а также причин, отраженных в п. 1, 2 и 3.

5. Ограничения метода, возникающие вследствие использования кислородно-водородной горелки - максимально допустимая темпера­тура в зоне кристаллизации не позволяет выращивать кристаллы це­лого ряда интересных для квантовой электроники соединений, мощ­ность всей системы в целом ограничена,

6. Выход готовых кристаллов по отношению к исходному порош­ку не превышает 60%, так как часть материала проносится газом мимо растущего кристалла. Это обстоятельство приобретает особое значение при выращивании дорогостоящих кристаллов, например мо­нокристаллов соединений РЗЭ.

7. Атмосфера выращивания является окислительно-восстанови­тельной, что существенно снижает возможности управления валентностями примесей, вводимых в кристалл.

Усовершенствованием метода Вернейля является замена кисло­родно-водородного факела другим источником дающим более высокие температуры. Речь идет, например, о плазменных разрядах. К их числу относятся электронный (дуговой) разряд и безэлектродный вы­сокочастотный газовый разряд.











Характеристики

Тип файла
Документ
Размер
1,02 Mb
Высшее учебное заведение

Список файлов вопросов/заданий

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее