Лекции по физике (984004), страница 4
Текст из файла (страница 4)
где - единичный вектор нормали к сфере. Эта формула, одна единственная, добивает все задачи центральной симметрии. Проблема одна – найти заряд, который находится внутри данной сферы, ну, это не очень тяжёлая проблема.
Можем немножко продолжить это дело. Вследствие того, что на любой сфере , интеграл по объёму можно свести, в принципе, к однократному интегралу, интегрируя по шаровым слоям, ну, напишу тут без подробных комментариев
. Вот это
объём шарового слоя радиуса
толщиной
. Почему я тут штрихи поставил, понятно.
стоит в верхнем пределе интеграла, ну тогда, чтоб не путать переменную интегрирования с верхним пределом, там я вместо
пишу
. Значит, если вот эта функция
предъявлена, то такой интеграл вычисляется. Так, всё, с центральной симметрией конец. Второй случай.
2
) Цилиндрическая симметрия. Вводим цилиндрические координаты
,
переходит в
. Вот у нас в цилиндрических координатах плотность
есть только функция от
, то есть не зависит от
и не зависит от
. Это означает, что имеется бесконечный цилиндр, и на поверхности цилиндра любого радиуса плотность заряда постоянна, и всё это дело продолжается до бесконечности по
, вот такая ситуация. Сразу, конечно ясно, что физически это не реализуется, но в качестве некоторой идеализации это разумно. Напишем снова
, значит, эквипотенциальные поверхности – это цилиндры с осью, совпадающей с осью симметрии, то есть с осью
. А силовые линии лежат в плоскостях ортогональных оси
. Так. В качестве замкнутой поверхности выбираем цилиндрическую поверхность радиуса
и высотой
, цилиндрическая поверхность, закрытая двумя крышками для того, чтобы она была замкнутой. Нормаль всегда берётся наружу. Из соображений симметрии ясно
(напряжённость поля в любой точке цилиндрической поверхности направлена вдоль вектора
, а величина зависит только от расстояния до оси симметрии). Поскольку у нас поверхность теперь задана в виде нескольких кусков, интеграл представится как сумма интегралов по этим кускам:
.
И нтеграл по крышкам равен нулю, потому что вектор
скользит по крышкам, скалярное произведение с нормалью – ноль.
.
В
нутренняя начинка этого цилиндра
, это интеграл по
.
, где
- это заряд на единицу длины цилиндра радиуса
, то есть это заряд лепёшки радиуса
единичной толщины. Отсюда мы получаем результат:
напряжённость поля во всех точках цилиндрической поверхности радиуса .
Э та формула убивает все проблемы, связанные с цилиндрической симметрией. И, наконец, третий пункт.
3
) Поле, создаваемое равномерно заряженной плоскостью. Вот мы имеем плоскость YZ, заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью . называется поверхностная плотность заряда. Если взять элемент поверхности , то в нём будет заряд
. Значит, симметрия такова, что при сдвигах вдоль y и z ничего не меняется, это означает, что производные по y и z от чего угодно должны равняться нулю:
. Это означает, что потенциал есть функция x только:
. Вот такое следствие. Это означает, что любая плоскость ортогональная оси x является эквипотенциальной поверхностью. На любой такой плоскости =const. Силовые линии ортогональны этим плоскостям, значит силовые линии – прямые параллельные оси x. Из соображений симметрии следует, что, если здесь они идут вправо от плоскости, то слева они должны идти влево от плоскости (ожидается, что имеется зеркальная симметрия).
Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.
П
усть
– единичный вектор вдоль оси x. В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.
Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра
. Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии
- функция расстояния до плоскости, тогда мы напишем так:
. Тогда мы имеем:
, а это заряд, который сидит внутри нашей поверхности.
Отсюда получается: . Что мы видим, что длина цилиндра, ну, расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:
Эта формула автоматически учитывает и знак заряда: если. Вот эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.
Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как , для цилиндра – как
и для плоскости вообще не убывает.
Два последние случая практически нереализуемые. Тогда какой смысл в этих формулах? Такой: например, эта формула справедлива вблизи середины плоского заряженного куска. Строго такая формула (однородное поле заполняет всё пространство) ни в какой физической ситуации не реализуется.
Поле, создаваемое произвольным распределением заряда.
Поле точечного заряда.
Пусть имеется один точечный заряд q. Это частный случай сферической симметрии. У нас есть формула: , где
– заряд внутри сферы радиуса r, но если заряд точки, то для точечного заряда
, при любом r. Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда
. Это поле точечного заряда. Потенциал поля точечного заряда:
.
Поле системы точечных зарядов. Принцип суперпозиции.
Пусть мы имеем систему зарядов
, тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать
, если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Заряд
умножьте на вектор
, и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора
.
То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по . Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.
4
В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости , напишем ещё формулу для потенциала.
Потенциал системы точечных зарядов.
И
меется система зарядов
и т.д. И тогда для некоторой точки
мы напишем такую формулу:
. Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.
З амечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле:
.1)