Главная » Просмотр файлов » Лекции по физике

Лекции по физике (984004), страница 11

Файл №984004 Лекции по физике (Лекции (в ворде)) 11 страницаЛекции по физике (984004) страница 112015-07-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Проверим размерность: М – это магнитный момент в единице объёма , размерность . Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

9

Н амагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока , так называемого молекулярного тока, и это уравнение эквивалентно такому: , то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением: , - это настоящие токи, связанные с конкретными носителями зарядов, а это токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде: , . Этот тоже отправим влево и обозначим , вектор называется напряжённостью магнитного поля, тогда уравнение приобретёт вид . (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу: . Для многих сред намагниченность зависит от напряжённости поля, , где магнитная восприимчивость, это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде , магнитная проницаемость, и мы получаем такую формулу: .

Если , то это парамагнетики, - это диамагнетики, ну, и, наконец, имеются вещества, для которых это принимает большие значения (порядка 103), - это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

,

,

.

А вот ещё пример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Квазистационарные поля

Приставке «квази-» русский эквивалент «якобы», то есть имеется в виду, что поле переменное, но не очень. Теперь мы полагаем, наконец, , но оставим одно: , чтобы не учитывать влияния электрического поля на магнитное. Уравнения Максвелла приобретают такой вид:

  1. ,

  2. ,

  3. ,

3) и 4) уравнения не изменились, это означает, что связь магнитного поля с токами в каждой точке осталась такой же, только мы теперь допускаем изменяющиеся со временем токи. Ток со временем может меняться, но связь магнитного поля и тока остаётся та же самая. Поскольку магнитная индукция связана с током линейно, будет меняться синхронно с током проводника: ток нарастает, магнитное поле нарастает, но связь между ними не меняется. А вот для электрического поля появляется новшество: циркуляция связана с изменением магнитного поля.

Явление электромагнитной индукции

Обнаруживается связь между электрическими и магнитными полями, если магнитное поле меняется со временем. Переменное магнитное поле является источником вихревого (замкнутого) электрического поля. Эпитет «вихревой» это не какая-нибудь метафора, а это просто означает, что силовые линии электрического поля замкнуты. Явление электромагнитной индукции описывается уравнением .

М агнитный поток , «поток» – это термин, вы не должны думать, что там течёт, это просто такая величина. Если поле однородное, а площадка перпендикулярна силовым линиям, то для этого случая ; если площадка ориентирована так, что нормаль к ней перпендикулярна силовым линиям, то есть магнитное поле скользит по этой поверхности площадки, то поток будет равен нулю. Наглядно величина Ф – это число силовых линий, пересекающих данную площадку. Это число на самом деле зависит от того, как густо мы их нарисуем, но тем не менее эти слова имеют смысл. Имеем однородное магнитное поле. Вот, я возьму площадку 1, тут поток один, теперь я возьму ту же самую площадку, но расположу в точке 2. Здесь (в точке 1) её пересекает пять силовых линий, а здесь (в точке 2) – только две. И, как бы я густо их ни рисовал, картина бы не изменилась.

Что утверждает закон? А закон утверждает вот что: возьмём замкнутый контур , на этот контур опирается поверхность S, вычисляем магнитный поток через поверхность, и закон утверждает, если магнитный поток через поверхность, опирающуюся на контур, изменяется со временем, то есть , то циркуляция напряжённости по контуру не равна нулю и равна . Это означает, что в среднем имеется составляющая электрического поля вдоль этого контура, направленная всё время в одну сторону.

Если я возьму проволочный контур, магнитный поток через площадь будет меняться, то в этом контуре появится электрический ток. Вот такое явление и называется явлением электромагнитной индукции.

Явление электромагнитной индукции – это появление тока в контуре, если меняется магнитный поток через этот контур.

Электродвижущая сила

Интеграл обозначают и называется эта величина электродвижущая сила. Какой смысл имеет термин? В своё время силами называли что ни попадя, сейчас слово «сила» употребляется в одном смысле: правая часть Второго закона Ньютона. И как раз наследие этих старых времён электродвижущая сила применительно к этой величине .

Квазистационарные токи

В от условие квазистационарности для тока: . О чём говорит это уравнение? Уравнение утверждает, что циркуляция напряжённости магнитного поля равняется полному току, который течёт через поверхность этого контура. А я теперь сделаю вот что: возьму поверхность (пузырь), опирающуюся на контур, а теперь стягиваю горловину. Когда я стягиваю этот контур к точке, вот эта левая часть стремится к нулю, потому что нигде не может достигать бесконечных значений, а что делается с правой частью? Поверхность становится замкнутой при стягивании контура в точку. Из этих рассуждений мы получаем, что . Вот это есть условие квазистационарности тока. Физически это означает вот что: какой заряд за единицу времени втекает в замкнутую поверхность, такой заряд и вытекает. Это означает в частности вот что: если имеется три проводника, следствие из утверждения будет, что . Охватим точку пересечения замкнутой поверхностью, поскольку токи втекающие за единицу времени и вытекающие равны, это и означает, что .

Закон Ома

Для металлических проводников с хорошей точностью выполняется такой закон: , где величина называется проводимость, это некоторая константа, характеризующая способность проводника проводить ток. Это закон в дифференциальной форме, какое отношение он имеет к закону, который вы хорошо знаете ? Это следствие, кстати, получите его для цилиндрического проводника.

Закон Ома для цепи с э.д.с.

Е
сли присутствуют сторонние силы, то закон Ома можно написать так: .

Эквивалент этого дела для такой цепи (см. рис.9.5) . Для замкнутой цепи .

10

Закон сохранения заряда

В прошлый раз мы рисовали такую картинку (рис. 9.1). У нас есть такое уравнение:1) . При стягивании контура к точке получим такое уравнение: , сократим на магнитную постоянную и представим интеграл суммы как сумму интегралов: . Если поверхность фиксирована, то , а из первого уравнения Максвелла , и мы имеем: - закон сохранения заряда.

Разрядка конденсатора


, с другой стороны мы уже знаем, что для конденсатора , отсюда . q,  – функции времени, чисто формально нужно изгнать одну функцию. Охватим пластину замкнутой поверхностью, (плотность тока в проводнике на сечение проводника – это сила тока). Составляем систему уравнений , откуда получаем дифференциальное уравнение , которое немедленно решается:. Начальные условия у нас такие: t=0, q(0)=q0, следовательно A=q0. .

Явление самоиндукции

Это частный случай электромагнитной индукции. По контуру течёт ток, возникает переменное магнитное поле, Ф= , э.д.с., которая наводится в контуре равна: , . Это явление называется самоиндукцией. , L – коэффициент самоиндукции (самоиндуктивность), зависящий от геометрии контура и от окружающей среды. Тогда мы получили такой закон: .

Индуктивность длинного соленоида

Р
ассмотрим один виток: , , следовательно . Это в одном витке, а полная э.д.с. находится суммированием по всем виткам: , коэффициент перед – коэффициент самоиндукции .

Вот вопрос: имеем катушку, что будет, если концы этой катушки всунуть в розетку? Меня этот вопрос интересовал с детства вот в связи с чем: это было давно и там всякие были проекты космических полётов, в качестве одного из проектов был такой: сделать длинный соленоид (такая магнитная пушка) в нём снаряд (металлический космический корабль), и в таком магнитном поле в длинной трубе он должен был бы разгоняться, выстреливаться и лететь. Была у меня такая книжка, там был этот один из проектов, ну, и я решил посмотреть. Взял соорудил картонную трубку, намотал на неё проволоку, посадил туда железную штучку и сунул в розетку посмотреть, будет ли оно лететь. Эффект был, конечно, впечатляющий, когда это всё со страшной вспышкой горело. Но сама проблема, что будет, если обмотку катушки всунуть в розетку, меня с тех пор занимает. Вот вопрос: что будет, если взять обмотанную катушку и сунуть в розетку? Ответ такой: если намотано там достаточно много витков, тогда сопротивление этой намотки будет равно нулю, будет течь переменный ток такой, что э.д.с. самоиндукции в каждый момент времени будет уравновешивать напряжение на клеммах розетки, чем больше индуктивность катушки, тем меньше будет ток, и ничего пикантного не произойдёт, при постоянном токе она сгорит, для постоянного тока такая катушка будет коротким замыканием. Переменный ток – катушку со сколь угодно малым сопротивлением, если у неё достаточно большая индуктивность, можно втыкать, и ничего страшного не произойдёт.

Энергия магнитного поля

Характеристики

Тип файла
Документ
Размер
8,99 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее