LINALG3 (957110), страница 2
Текст из файла (страница 2)
Из определения сразу следует, что если обратный оператор определен, то
В частности, если (т.е., рассматриваются линейные преобразования), то можно написать двойное тождество
Утверждение 1.8 Если обратный линейный оператор существует, то он - единственный.
Доказательство. Предположим, что существуют два линейных оператора и
, обратных к
. Тогда:
, где через
обозначено тождественное преобразование пространства
,
.
Пусть - линейное преобразование пространства
. Линейное преобразование
назовем левым обратным к
, если
Аналогично определяется линейное преобразование, правое обратное к :
Как и для матриц доказывается
Утверждение 1.9 Если для линейного преобразования существует левое и правое обратное преобразования, то они равны и совпадают с обратным к
.
Доказательство. Имеем:
Доказанное утверждение можно распространить и на произвольный линейный оператор , но тогда
- тождественное преобразование пространства
, соответственно
- тождественное преобразование пространства
.
Доказанное только что позволяет нам ввести обозначение для линейного оператора, обратного к
.
Определение 1.14 Линейный оператор называется обратимым, если существует обратный к нему линейный оператор.
Основным результатом настоящего раздела является следующая теорема:
Теорема 1.2 (Критерий обратимости линейного оператора). Линейный оператор обратим тогда и только тогда, когда он является изоморфизмом
на
.
Доказательство. 1) Необходимость. Если оператор обратим, то его ядро тривиально, т.е. состоит из одного нулевого вектора. Действительно, пусть для некоторого ненулевого
. Тогда
, что невозможно. Следовательно,
, и
- мономорфизм. Полагая теперь, что
, получим для некоторого
, откуда
- в противоречии с предположением. Окончательно получаем, что
- изоморфизм.
2) Достаточность. Пусть - изоморфизм. Тогда для каждого
существует единственный
такой, что
.
Другими словами, мы определили такое отображение из
в
, что образ
есть тот самый (единственный в силу того, что
изоморфизм!)
, для которого
:
(здесь использовано так называемое «йота-обозначение», или «йота-оператор»: означает «тот единственный
, для которого истинно
»).
Из определения отображения сразу следует, что
Это значит, что осталось только показать, что отображение линейно.
Имеем: для произвольных пусть
, а
. Тогда
Совершенно аналогично доказывается, что (для любого вещественного
).
Итак, отображение линейно и, следовательно,
.
Теорема доказана.
Следствие 1.1 Если - изоморфизм, то
- также изоморфизм.
Следствие 1.2 Композиция изоморфизмов есть изоморфизм, причем для изоморфизмов
.
Определение 1.15 Линейные пространства и
называются изоморфными, если существует изоморфизм одного из них на другое.
Для изоморфных пространств будем писать . На основании доказанного выше мы можем утверждать:
Содержательно тот факт, что два линейных пространства изоморфны, означает, что между этими пространствами можно установить такое взаимно однозначное соответствие , что для любых векторов
одного из этих пространств
т.е., с точки зрения линейных операций над векторами, эти пространства неразличимы. Тогда, например, если вычисления удобнее выполнять в каком-то одном пространстве, то эти вычисления можно выполнить именно в этом пространстве, а получив результат, «вернуться» в другое пространство.
Оказывается, любое конечномерное линейное пространство совпадает «с точностью до изоморфизма» с арифметическим векторным пространством для подходящего
.
Теорема 1.3 Конечномерное линейное пространство , размерность которого
изоморфно арифметическому пространству
.
Доказательство. Выберем в пространстве какой-то базис
и разложим по нему произвольно выбранный вектор
:
Отображение зададим тогда так:
т.е., любому вектору сопоставляется столбец его координат в некотором базисе. Ясно, что относительно фиксированного базиса отображение взаимно однозначно. Линейность его также легко проверяется.
Итак, в силу доказанной теоремы, если отождествлять изоморфные линейные пространства, то любое конечномерное линейное пространство совпадает с пространством арифметических векторов подходящей размерности.
Например, в пространстве матриц система матриц
, где
,
образует базис.
Заметим еще, что если отождествлять конечномерное линейное пространство с изоморфным ему арифметическим, то исчезает и принципиальное различие между мономорфизмом и изоморфизмом.
Действительно, если мономорфизм рассматривать как изоморфизм
на
, то при
получим цепочку изоморфизмов:
что дает нам право считать мономорфизм изоморфизмом арифметического пространства
на себя.