Калыгин - Промышленная экология - 2000 (947505), страница 20
Текст из файла (страница 20)
Теоретический расход реагентов составляет 0,4-2,5 кг1кг. Время взаимодействия сточных вод и реагента превышает 5 мин, для кислых стоков с ионами металлов — 30 мин. Очистка сточных вод окислителями. Наряду с традиционными окислителями, такими, как хлор и хлорсодержащие вещества (гипохлорит натрия, диоксид хлора и др.), пиролизит, кислород воздуха в последние годы применяют озон. При проведении глубокой очистки воды с успехом применяют озонирование.
Озонирование в ряде процессов может заменить коагуляцию с быстрым фильтрованием, адсорбцию на некоторых стадиях очистки сточных вод и в сочетании с другими методами — биохимическую очистку. Наиболее перспективным является применение озона для очистки воды от синтетических поверхностно-активных веществ (СПАВ), от нефтепродуктов и очистки сливных вод на стадиях выработки стеклоиэделий. Оэонолиз представляет собой процесс фиксации озона на двойной или тройной углеродной связи с последующим ее разрывом и образованием озонидов, которые неустойчивы и быстро разлагаются.
Каталитическое воздействие озонирования состоит в росте окисляющей способности кислорода, присутствующего в озонированном воздухе. Совокупность всех форм окисляющего и дезинфицирующего действия озона обеспечивает его применение на всех стадиях очистки сточных вод и подготовки воды к использованию в процессе производства. При совместном действии озонолиза и окисления радикалами удаляются коллоидные вещества, токсичные микрозагряэнители, растворенные органические вещества. В настоящее время наиболее эффективно используют инжекторные (ИМТ-600) и роторные аппараты, напорные трубопроводы, змеевики. Инжекторные и роторные аппараты дают равномерное смешение фаэ, высокие скорость реакции, степень очистки и более полное использование озона. При введении озона непосредственно в напорный трубопровод обеспечивается простота и компактность смесителя, уменьшение потерь озона и высокий эффект очистки при отсутствии контактных камер.
При озонировании можно использовать змеевик, работающий следующим образом. Сточную воду подают насосом через змеевик, в который с помощью инжектора также вводят оэоновоздушную смесь. После змеевика вода с большой скоростью проходит трубу воздухоотделения и переливается через его верхнюю кромку, освобождаясь от пузырьков воздуха. Эффективность использования озона в змеевике возрастает до 80-90%, а скорость окисления вдвое больше по сравнению с барботажными аппаратами. Эффективность барботажных реакторов с насадочными колонками повышают в результате использования элементов из керамических и металлокерамических труб с размером пор 100 мкм.
Для интенсификации окисления применяют кавитирующий эффект, который достигается в кавитационном аэраторе или в центробежной распылительной машине, а также при использовании ультразвуковой энергии. Наибольшее окисление достигается в центробежной распылительной машине (р и с, 6.7), где интенсивность механических колебаний в зоне смешения достигает 57 Втlсм . Особенностью конструкции являются диски- г распылители 1, установленные в камере смешения 4. При заданной частоте вращения дисков-распылителей 42 мlс возникает кавитация. Обрабатываемая вода, подаваемая через патрубки 2, всасывается через полый вал 8, диспергируется дисками, образуя на выходе из зазора между дисками тонкую пленку.
Обработанная вода выводится через патрубок 5. Пленка проходит между стационарными направляющими 3, распыляется на капли и пузырьки, которые смешиваются с озонированным воздухом, вводимым через боковые патрубки. Озонированная вода 6 по трубопроводу 7 возвращается в цикл. Р и с. 6Л.
Центробежная распылительная иашина Озонирование используют в основном для доочистки стоков после флотации, дезинфекции, флокуляции, фильтрации на песчаных фильтрах и фильтров с активированным углем. Мембранная очистка сточных вод. К основным мембранным методам разделения жидких систем относятся обратный осмос, ультрафильтрация, микрофильтрация, электродиализ. Преимущества этих методов заключа- 104 ются в возможности ведения процесса при нормальной температуре (кроме процесса испарения через мембрану) без фазовых превращений и при меньших энергетических затратах, чем в других методах очистки, простоте оформления аппаратуры, высокой степени разделения, позволяющей увеличить выход готового продукта.
Процессы обратного осмоса, ультрафильтрации и микрофильтрации ведут под избыточным давлением и относят их к группе баромембранных процессов, в которых перенос молекул или ионов растворенных веществ происходит через полупроницаемую перегородку (мембрану) под давлением, превышающим осмотическое. Под осмосом понимается самопроизвольный перенос (молекулярная диффузия) растворителя через мембрану.
Различие между обратным осмосом и ультрафильтрацией состоит в том, что при ультрафильтрации разделяются низкоосмотические растворы молекулярной массой больше 500, а при обратном осмосе разделяются растворы низкомолекулярных веществ с высоким осмотическим давлением. Движущая сила ультрафильтрации и обратного осмоса определяется разностью рабочего давления Р и осмотического давлений разделяемого раствора у поверхности мембраны П,: ЛР = Р— П„а с учетом осмотического давления пермеата (фильтрата) П~ (Пз П2) Рабочее давление при обратном осмосе составляет 5-8 МПа.
Ультрафильтрацию применяют для разделения систем, где молекулярная масса компонентов больше молекулярной массы растворителя, например, для водных систем, в которых один из компонентов имеет молекулярную массу выше 500. Осмотическое давление высокомолекулярных соединений мало, что позволяет проводить ультрафильтрацию при невысоком давлении (0,2-1 МПа). С помощью ультрафильтрации разделяют растворы высокомолекулярных и низкомолекулярных соединений. Процесс выделения из раствора коллоидных частиц размером 0,1-10 мкм при давлении порядка десятых и сотых долей мегапаскалей относится к микрофильтрации и занимает промежуточное положение.
В отличие от обычной фильтрации, при которой продукт в виде осадка откладывается на поверхности мембраны, при обратном осмосе и ультра- фильтрации образуются два раствора, один из которых обогащен растворенным веществом. Баромембранные процессы позволяют разделить частицы по размерам, мкм: обратный осмос — 0,0001-0,001, ультрафильтрация — 0,001-0,02 и микрофильтрация — 0,02-1 О.
При деминерализации сточных вод и различных смесей используют диализ и электродиализ. Диализ является диффузионным процессом разделения веществ в результате их неодинаковой диффузии через мембрану. По существу диализ является разновидностью ультрафильтрации. 105 Более широкое применение при обработке воды и растворов находит в последние годы электродиализ.
Электродиализные аппараты, использующие биполярные и ионообменные мембраны, применяют для выделения отдельных компонентов из сточных вод, регенерации и вторичного использования фтористоводородной и азотной кислот, щелочей из травильных растворов и из жидкостей после скрубберов для очистки газов, сульфата натрия, серной кислоты и т.д. Для очистки сточных вод применяют мембранную установку, включающую наряду с мембраной и фильтр-держателем, образующими мембранный модуль, емкости, насосы, контрольно-измерительную аппаратуру и системы очистки мембран. При выборе и разработке мембранных установок необходимо учитывать следующие факторы: характер фильтруемой среды (жидкость или газ); выбор целевого продукта: фильтрата или задержанных мембраной частиц; минимальный размер выделяемых частиц и размер пор мембраны. Выбор оптимального размера пор производят на основе данных по селективности мембран от размера пор при максимально возможной производительности; объем перерабатываемой жидкости (малый или большой объем определяют сложность конструкции мембранного модуля); вид раствора (водный или неводный).
В последнем случае агрессивность жидкой среды требует применения мембран и опорных элементов, стойких к действию растворителя. Установки должны отвечать р я д у т р е б о в а н и й . 1. Материалы разделительной системы должны работать под высоким давлением и быть устойчивыми к коррозии. 2. Компактность установки, простота обслуживания и возможность быстрой разборки и сборки установки при ремонте и транспортировании. 3. Возможность периодического промывания установки для восстановления производительности мембран. 4.
Возможность предотвращения отложения осадка на мембранах и снижения влияния концентрированной поляризации. Для этого необходимо обеспечить высокую скорость течения жидкости над мембраной и ее равномерное распределение по секциям и элементам мембранного модуля. 5. Возможность нагрева или охлаждения обрабатываемых жидкостей. При создании мембранных модулей необходимо обеспечить их механическую прочность, герметичность и другие условия. В настоящее время мембранные модули классифицируют по способу укладки мембран, по типу корпусов (корпусные и бескорпусные), по условиям демонтажа (разборные и неразборные), по положению мембранных элементов (горизонтальные или вертикальные) и по режиму работы.
По способу укладки мембран используют разделительные элементы четырех типов: 1) аппараты с плоскими мембранными элементами; 2) аппараты с трубчатыми элементами; 3) аппараты с элементами рулонного типа; 4) аппараты с мембранами в виде полых волокон, Пленочные мембраны входят в состав разделительного элемента и размещаются на пористой опоре-дренаже с подложкой. Иногда подложка играет роль опоры, и в этом случае мембраны размещаются с обеих сторон подложки. Аппараты с плоскими мембранными элементами выпускают корпусными и бескорпусными, периферийными, с общим или отдельным из каждого элемента выводом пермеата. Элементы выполняют круглыми (эллиптическими) и квадратными. И Л7 Р и с .
6.В. Аппарат с плоскорамными элементами На р и с. 6.8 представлен аппарат с плоскими мембранными элементами фирмы ДДС (Дания), работающий с растворами при давлении Р = 2 МПа, рН вЂ” 14 и температуре до 100 'С, Аппарат представляет собой пакет мембранных элементов 9 эллиптической формы, находящийся между круглыми фланцами 11.
Соосность элементов и их затяжка обеспечиваются направляющими штангами 8. Элементы состоят из пластин У, покрытых с обеих сторон мембранами 6. Отверстия в пластинах и мембранах точно совмещаются и герметизируются со стороны входа разделяемого раствора в отверстие 10 проточным кольцом 5 и со стороны выхода из него — замковым кольцом 4. В проточных кольцах 5 выполнены прорези в радиальном направлении, обеспечивающие подачу раствора из отверстия одного элемента в межмембранный канал и отвод в другое отверстие следующего элемента.