Бьерн Страуструп (947334), страница 32
Текст из файла (страница 32)
Освобождение памяти обычно тривиально:
void name::operator delete(void* p, size_t)
{
((name*)p)->next = nfree;
nfree = (name*) p;
}
Приведение параметра типа void* к типу name* необходимо, поскольку
функция освобождения вызывается после уничтожения объекта, так что
больше нет реального объекта типа name, а есть только кусок
памяти размером sizeof(name). Параметры типа size_t в приведенных
функциях name::operator new() и name::operator delete() не
использовались. Как можно их использовать, будет показано в $$6.7.
Отметим, что наши функции размещения и удаления используются
только для объектов типа name, но не для массивов names.
5.6 Упражнения
1. (*1) Измените программу калькулятора из главы 3 так, чтобы
можно было воспользоваться классом table.
2. (*1) Определите tnode ($$R.9) как класс с конструкторами и
деструкторами и т.п., определите дерево из объектов типа
tnode как класс с конструкторами и деструкторами и т.п.
3. (*1) Определите класс intset ($$5.3.2) как множество строк.
4. (*1) Определите класс intset как множество узлов типа tnode.
Структуру tnode придумайте сами.
5. (*3) Определите класс для разбора, хранения, вычисления и печати
простых арифметических выражений, состоящих из целых констант и
операций +, -, * и /. Общий интерфейс класса должен выглядеть
примерно так:
class expr {
// ...
public:
expr(char*);
int eval();
void print();
};
Конструктор expr::expr() имеет параметр-строку, задающую выражение.
Функция expr::eval() возвращает значение выражения, а expr::print()
выдает представление выражения в cout. Использовать эти функции
можно так:
expr("123/4+123*4-3");
cout << "x = " << x.eval() << "\n";
x.print();
Дайте два определения класса expr: пусть в первом для представления
используется связанный список узлов, а во втором - строка
символов. Поэкспериментируйте с разными форматами печати
выражения, а именно: с полностью расставленными скобками,
в постфиксной записи, в ассемблерном коде и т.д.
6. (*1) Определите класс char_queue (очередь символов) так, чтобы
его общий интерфейс не зависел от представления. Реализуйте
класс как: (1) связанный список и (2) вектор. О параллельности
не думайте.
7. (*2) Определите класс histogram (гистограмма), в котором ведется
подсчет чисел в определенных интервалах, задаваемых в виде
параметров конструктору этого класса. Определите функцию
выдачи гистограммы. Сделайте обработку значений, выходящих за
интервал. Подсказка: обратитесь к <task.h>.
8. (*2) Определите несколько классов, порождающих случайные числа
с определенными распределениями. Каждый класс должен иметь
конструктор, задающий параметры распределения и функцию draw,
возвращающую "следующее" значение. Подсказка: обратитесь к
<task.h> и классу intset.
9. (*2) Перепишите примеры date ($$5.2.2 и $$5.2.4), char_stack
($$5.2.5) и intset ($$5.3.2), не используя никаких функций-членов
(даже конструкторов и деструкторов). Используйте только class
и friend. Проверьте каждую из новых версий и сравните их
с версиями, в которых используются функции-члены.
10.(*3) Для некоторого языка составьте определения класса для таблицы
имен и класса, представляющего запись в этой таблице. Исследуйте
транслятор для этого языка, чтобы узнать, какой должна быть настоящая
таблица имен.
11.(*2) Измените класс expr из упражнения 5 так, чтобы в выражении
можно было использовать переменные и операцию присваивания =.
Используйте класс для таблицы имен из упражнения 10.
12.(*1) Пусть есть программа:
#include <iostream.h>
main()
{
cout << "Всем привет\n";
}
Измените ее так, чтобы она выдавала:
Инициализация
Всем привет
Удаление
Саму функцию main() менять нельзя.
* ГЛАВА 6
Не плоди объекты без нужды.
- В. Оккам
Эта глава посвящена понятию производного класса. Производные
классы - это простое, гибкое и эффективное средство определения
класса. Новые возможности добавляются к уже существующему
классу, не требуя его перепрограммирования или перетрансляции.
С помощью производных классов можно организовать общий
интерфейс с несколькими различными классами так, что в других
частях программы можно будет единообразно работать с объектами
этих классов. Вводится понятие виртуальной функции, которое
позволяет использовать объекты надлежащим образом даже
в тех случаях, когда их тип на стадии трансляции неизвестен.
Основное назначение производных классов - упростить
программисту задачу выражения общности классов.
6.1 Введение и краткий обзор
Любое понятие не существует изолированно, оно существует во
взаимосвязи с другими понятиями, и мощность данного понятия во
многом определяется наличием таких связей. Раз класс служит для
представления понятий, встает вопрос, как представить взаимосвязь
понятий. Понятие производного класса и поддерживающие его
языковые средства служат для представления иерархических связей,
иными словами, для выражения общности между классами. Например,
понятия окружности и треугольника связаны между собой, так как
оба они представляют еще понятие фигуры, т.е. содержат более общее
понятие. Чтобы представлять в программе окружности и треугольники
и при этом не упускать из вида, что они являются фигурами, надо
явно определять классы окружность и треугольник так, чтобы было видно,
что у них есть общий класс - фигура. В главе исследуется, что
вытекает из этой простой идеи, которая по сути является основой того,
что обычно называется объектно-ориентированным программированием.
Глава состоит из шести разделов:
$$6.2 с помощью серии небольших примеров вводится понятие производного
класса, иерархии классов и виртуальных функций.
$$6.3 вводится понятие чисто виртуальных функций и абстрактных
классов, даны небольшие примеры их использования.
$$6.4 производные классы показаны на законченном примере
$$6.5 вводится понятие множественного наследования как возможность
иметь для класса более одного прямого базового класса,
описываются способы разрешения коллизий имен, возникающих
при множественном наследовании.
$$6.6 обсуждается механизм контроля доступа.
$$6.7 приводятся некоторые приемы управления свободной памятью для
производных классов.
В последующих главах также будут приводиться примеры, использующие
эти возможности языка.
6.2 Производные классы
Обсудим, как написать программу учета служащих некоторой
фирмы. В ней может использоваться, например, такая структура данных:
struct employee { // служащие
char* name; // имя
short age; // возраст
short department; // отдел
int salary; // оклад
employee* next;
// ...
};
Поле next нужно для связывания в список записей о служащих
одного отдела (employee). Теперь попробуем определить структуру данных
для управляющего (manager):
struct manager {
employee emp; // запись employee для управляющего
employee* group; // подчиненный коллектив
short level;
// ...
};
Управляющий также является служащим, поэтому запись employee
хранится в члене emp объекта manager. Для человека эта общность
очевидна, но для транслятора член emp ничем не отличается от
других членов класса. Указатель на структуру manager (manager*)
не является указателем на employee (employee*), поэтому
нельзя свободно использовать один вместо другого. В частности,
без специальных действий нельзя объект manager включить в список
объектов типа employee. Придется либо использовать явное приведение
типа manager*, либо в список записей employee включить адрес
члена emp. Оба решения некрасивы и могут быть достаточно запутанными.
Правильное решение состоит в том, чтобы тип manager был типом
employee с некоторой дополнительной информацией:
struct manager : employee {
employee* group;
short level;
// ...
};
Класс manager является производным от employee, и, наоборот, employee
является базовым классом для manager. Помимо члена group в классе
manager есть члены класса employee (name, age и т.д.).
Графически отношение наследования обычно изображается в виде
стрелки от производных классов к базовому:
employee
^
|
manager
Обычно говорят, что производный класс наследует базовый класс, поэтому
и отношение между ними называется наследованием. Иногда базовый класс
называют суперклассом, а производный - подчиненным классом. Но
эти термины могут вызывать недоумение, поскольку объект производного
класса содержит объект своего базового класса. Вообще производный
класс больше своего базового в том смысле, что в нем содержится
больше данных и определено больше функций.
Имея определения employee и manager, можно создать список
служащих, часть из которых является и управляющими:
void f()
{
manager m1, m2;
employee e1, e2;
employee* elist;
elist = &m1; // поместить m1 в elist
m1.next = &e1; // поместить e1 в elist
e1.next = &m2; // поместить m2 в elist
m2.next = &e2; // поместить m2 в elist
e2.next = 0; // конец списка
}
Поскольку управляющий является и служащим, указатель manager*
можно использовать как employee*. В то же время служащий не
обязательно является управляющим, и поэтому employee* нельзя
использовать как manager*.
В общем случае, если класс derived имеет общий базовый класс
base, то указатель на derived можно без явных преобразований типа
присваивать переменной, имеющей тип указателя на base. Обратное
преобразование от указателя на base к указателю на derived может быть
только явным:
void g()
{
manager mm;
employee* pe = &mm; // нормально
employee ee;
manager* pm = ⅇ // ошибка:
// не всякий служащий является управляющим
pm->level = 2; // катастрофа: при размещении ee
// память для члена `level' не выделялась
pm = (manager*) pe; // нормально: на самом деле pe
// не настроено на объект mm типа manager
pm->level = 2; // отлично: pm указывает на объект mm
// типа manager, а в нем при размещении
// выделена память для члена `level'
}
Иными словами, если работа с объектом производного класса идет через
указатель, то его можно рассматривать как объект базового класса.
Обратное неверно. Отметим, что в обычной реализации С++ не
предполагается динамического контроля над тем, чтобы после преобразования
типа, подобного тому, которое использовалось в присваивании pe в pm,
получившийся в результате указатель действительно был настроен на объект
требуемого типа (см. $$13.5).
6.2.1 Функции-члены
Простые структуры данных вроде employee и manager сами по себе
не слишком интересны, а часто и не особенно полезны. Поэтому добавим
к ним функции:
class employee {
char* name;
// ...
public:
employee* next; // находится в общей части, чтобы
// можно было работать со списком
void print() const;
// ...
};
class manager : public employee {
// ...
public:
void print() const;
// ...
};
Надо ответить на некоторые вопросы. Каким образом функция-член
производного класса manager может использовать члены базового класса
employee? Какие члены базового класса employee могут использовать
функции-члены производного класса manager? Какие члены базового
класса employee может использовать функция, не являющаяся членом объекта
типа manager? Какие ответы на эти вопросы должна давать реализация
языка, чтобы они максимально соответствовали задаче программиста?
Рассмотрим пример:
void manager::print() const
{
cout << " имя " << name << '\n';
}
Член производного класса может использовать имя из общей части своего
базового класса наравне со всеми другими членами, т.е. без указания
имени объекта. Предполагается, что есть объект, на который настроен
this, поэтому корректным обращением к name будет this->name. Однако,
при трансляции функции manager::print() будет зафиксирована ошибка: