Учебник по БЖД (850677), страница 22
Текст из файла (страница 22)
При непостоянной вибрации нормой вибрационной нагрузки на оператора являются одночисловые нормативные значения дозы вибрации или эквивалентного корректированного по времени воздействия значения контролируемого параметра.
Методы борьбы с шумом и вибрацией
Комплекс мероприятий, обеспечивающих снижение шума, предусматривает нижеследующие направления.
-
Снижение шума в источнике достигается различными способами: заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным, тщательной балансировкой вращающихся механизмов, выбором малошумных материалов с большим внутренним трением и др.
-
Уменьшение шума на пути его распространения. На рис. 26 приведена классификация средств коллективной защиты от шума на пути его распространения
-
Уменьшения шума можно достичь за счет рациональной планировки зданий, в соответствии с которой наиболее шумные помещения должны быть сконцентрированы в глубине территории в одном месте. Они должны быть удалены от помещений для умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум.
-
Помимо мер технологического и технического характера широко применяются средства индивидуальной защиты – антифоны, выполненные в виде наушников или вкладышей. Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, построения рационального режима труда и отдыха, предусматривающего кратковременные перерывы в течение рабочего дня для восстановления функции слуха в тихих помещениях (защита временем).
Звукоизоляция
Звукопоглощение
Рис. 26. Средства коллективной защиты от шума на пути его распространения
Основные методы борьбы с вибрациями машин и оборудования.
-
Снижение вибраций воздействием на источник возбуждения посредством снижения или ликвидации вынуждающих сил, например замена кулачковых и кривошипных механизмов равномерно вращающимися, а также механизмами с гидроприводами и т.д.
-
Отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы.
-
Вибродемпфирование. Это процесс уменьшения уровня вибраций защищаемого объекта путем превращения энергии механических колебаний в тепловую энергию. Для этого вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). Вибрации, распространяющиеся по коммуникациям (трубопроводам, каналам), ослабляются их стыковкой через звукопоглощающие материалы (прокладки из резины и пластмассы). Широко применяются противошумные мастики, наносимые на поверхность металла.
-
Динамическое гашение вибрации чаще всего осуществляют путем установки агрегатов на фундаменты. Для небольших объектов между основанием и агрегатом устанавливают массивную опорную плиту.
-
Изменение конструктивных элементов машин и строительных конструкций.
-
При работе с ручным механизированным электрическим и пневматическим инструментом применяют средства индивидуальной защиты рук от воздействия вибраций. К ним относят рукавицы, перчатки, а также виброзащитные прокладки или пластины, которые снабжены креплениями в руке.
На рис. 27 приведена классификация методов и средств коллективной защиты от вибрации.
Рис. 27. Классификация методов и средств защиты от вибрации
Контрольные вопросы и задачи
-
Влияние шума на организм человека. Частотный диапазон слышимых человеком звуков. Инфразвук и ультразвук.
-
Понятие октавной полосы, спектра шума. Среднегеометрическая частота.
-
Уровень интенсивности звука, уровень звукового давления.
-
Задача. Определить уровень интенсивности звука в расчетной точке помещения, создаваемый десятью одинаковыми источниками интенсивностью 10-5 Вт/м2 каждый. Интенсивность звука, соответствующая порогу слышимости, составляет 10-12 Вт/м2.
-
Нормирование шума. Понятие предельного спектра. Уровень звука
(дБА). Понятие дозы шума. -
Нормирование ультразвука и инфразвука.
-
Основные характеристики вибрации.
-
Логарифмический уровень виброскорости и виброускорения.
-
Классификация вибрации по способу передачи на человека.
-
Категории вибрации в зависимости от источника ее возникновения.
-
Нормирование вибрации.
-
Методы борьбы с шумом и вибрацией.
Электромагнитные поля
Электромагнитное поле (ЭМП) представляет особую форму материи. Всякая электрически заряженная частица окружена электромагнитным полем. электромагнитное поле может существовать и в свободном состоянии в виде движущихся со скоростью 3·108 м/с фотонов или в виде электромагнитных волн.
Движущееся ЭМП (электромагнитное излучение – ЭМИ) характеризуется векторами напряженности электрического Е, [В/м], и магнитного Н, [А/м], полей, которые определяют силовые свойства ЭМП.
Длина волны λ, частота колебаний f и скорость распространения электромагнитных волн в воздухе с связаны соотношением с = λ f. Например, для промышленной частоты f = 50 Гц длина волны λ = 3·108/50 = 6000 км, а для ультракоротких частот f = 3·108 Гц длина волны равна 1 м.
В ЭМП существует три зоны, которые различаются по расстоянию от источника.
Зона индукции I (ближняя зона) имеет радиус R ≤ λ/2π. В этой зоне электромагнитная волна не сформирована, и поэтому на человека действует независимо друг от друга напряженность электрического и магнитного полей.
Зона интерференции II (промежуточная) имеет радиус λ/2π R 2π λ.
В этой зоне одновременно воздействуют на человека напряженность электрического и магнитного полей, а также энергетическая составляющая.
Зона излучения III (дальняя), имеющая радиус R 2πλ, характеризуется тем, что это зона сформировавшейся электромагнитной волны. В этой зоне на человека воздействует только энергетическая составляющая, а векторы Е и Н всегда взаимно перпендикулярны. В вакууме и воздухе Е = 377 Н.
Для токов промышленных частот размер зон I и II составляет несколько десятков километров. Начиная со сверхвысоких частот, зона индукции уменьшается и оценка осуществляется по характеристике S, для которой в нормативных документах принято название – плотность потока энергии (ППЭ), хотя фактически – это плотность потока мощности, [Вт/м2], которая в общем виде определяется векторным произведением Е и Н, а для сферических волн при распространении в воздухе может быть выражена как
где Р – мощность излучения, Вт.
Источники ЭМП и классификация электромагнитных излучений
Естественными источниками электромагнитных полей и излучений являются атмосферное электричество, радиоизлучения Солнца и галактик, электрическое и магнитное поля Земли.
Источниками электрических полей промышленной частоты (50 Гц) являются линии электропередач, а также все высоковольтные установки промышленной частоты.
Магнитные поля промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты.
Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, установки индукционного нагрева, исследовательские установки, высокочастотные приборы и устройства, используемые в промышленности, в медицине и в быту.
Источниками электростатического поля и электромагнитных излучений в широком диапазоне частот являются персональные электронно-вычислительные машины (ПЭВМ) и видеодисплейные терминалы (ВДТ) на электронно-лучевых трубках. Главную опасность для пользователей представляют электромагнитное излучение монитора в диапазоне частот
5 Гц…400 кГц и статический электрический заряд на экране.
В табл. 11 представлен весь спектр электромагнитных излучений.
Таблица 11
Спектр электромагнитных излучений
Название ЭМИ | Диапазон частот, Гц | Длины волн, м | |
Статические | Постоянные ЭМП | 0 | – |
Низкочастотные | Крайне- и сверхнизкие | 3(100...102) | 108 ...106 |
Инфра- и очень низкие, низкие | 3(102...104) | 106...104 | |
Радиочастотные | Длинные волны (ДВ) | 3(104...105) | 104...103 |
Средние волны (СВ) | 3(105...106) | 103...102 | |
Короткие волны (KB) | 3(106 ...107) | 102...101 | |
Ультракороткие (УКВ) | 3(107...108) | 101...100 | |
Микроволны (СВЧ) | 3(108...10 11) | 10°...10-3 | |
Оптические | Инфракрасные | 3(1011...1014) | 10-3 ...10-6 |
Видимые | 3·1014 | (0,39...0,76)10-6 | |
Ультрафиолетовые | 3(1014...1015) | 10-6...10-7 | |
Ионизирующие | Рентгеновское излучение | 3(1015...1019) | 10-7...10-11 |
Гамма-излучение | 3(1019 –1022) | 10-11...10-14 |
Действие электромагнитных полей от техногенных источников
на организм человека
Степень воздействия ЭМП на человека зависит от частоты, напряжен-ности электрического и магнитного полей, интенсивности потока энергии, локализации излучения и индивидуальных особенностей организма. Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем. Это выражается в повышенной утомляемости, болях в области сердца, изменении кровяного давления и пульса. Возможны также незначительные и нестойкие изменения в составе крови.
Под влиянием высокочастотных колебаний в крови, являющейся электролитом, возникают ионные токи, вызывающие нагрев тканей тела человека.
Нормирование ЭМП промышленной частоты
и статических полей
Допустимые уровни воздействия на работников и требования к проведению контроля на рабочих местах для электромагнитных полей изложены в СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях», а также ГОСТ 12.1.002-84 – для электромагнитных полей промышленной частоты и ГОСТ 12.1.006-84 – для электромагнитных полей радиочастот.
Для электростатических полей, согласно ГОСТ 12.1.045 - 84, устанавли-вается допустимая напряженность поля на рабочих местах по формуле
где Е – допустимая напряженность поля, кВ/м;
t – продолжительность воздействия поля, t = 1 ... 9 ч.