Главная » Просмотр файлов » 1612726871-fd1970eb57207f2e4883f7549db906ce

1612726871-fd1970eb57207f2e4883f7549db906ce (828573), страница 7

Файл №828573 1612726871-fd1970eb57207f2e4883f7549db906ce (Ларин, Плясунов - Примеры и задачи) 7 страница1612726871-fd1970eb57207f2e4883f7549db906ce (828573) страница 72021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Ïîñêîëüêó ýòî ðåøåíèå ÿâëÿåòñÿ îòðèöàòåëüíûì,òî÷êà x0 íå îïòèìàëüíà.Ñèñòåìà (3) äëÿ òî÷êè x00 èìååò âèä −f 0 (x00 ) = y2 ϕ02 (x00 ) + y3 ϕ03 (x00 ), ò. å.µ √¶µ √¶µ¶−15−35−1= y2+ y3.−1−3−1Åäèíñòâåííûì ðåøåíèåì ýòîé ñèñòåìû ÿâëÿåòñÿ y2 = 1, y3 = 2. Ïîñêîëüêó ýòî ðåøåíèåíåîòðèöàòåëüíî, òî÷êà x00 ÿâëÿåòñÿ òî÷êîé ãëîáàëüíîãî ìèíèìóìà ôóíêöèè f (x) íà ìíîæåñòâå X .Ïðèìåð 2.

Ïðîâåðèòü òî÷êó x = (−1/2, 1/4) íà îïòèìàëüíîñòü â çàäà÷å f (x) = ex2 −→min ïðè îãðàíè÷åíèÿõ ϕ1 (x) ≡ (x1 + 1)2 − x2 ≤ 0, ϕ2 (x) ≡ (x1 − 1/2)2 + (x2 + 3/4)2 − 2 ≤ 0.Ðåøåíèå. Íåòðóäíî óáåäèòüñÿ, ÷òî äàííàÿ çàäà÷à ÿâëÿåòñÿ çàäà÷åé âûïóêëîãî ïðîãðàììèðîâàíèÿ. Ïîñêîëüêó ϕ1 (x) = ϕ2 (x) = 0, òî÷êà x ÿâëÿåòñÿ äîïóñòèìîé è I(x) = {1, 2}.Ñèñòåìà (3) äëÿ ýòîé òî÷êè èìååò âèä −f 0 (x) = y1 ϕ01 (x) + y2 ϕ02 (x), ò. å.

y1 − 2y2 = 0, −y1 +2y2 = −e1/4 . Î÷åâèäíî, ÷òî ýòà ñèñòåìà íåñîâìåñòíà. Îäíàêî äåëàòü âûâîä î íåîïòèìàëüíîñòè òî÷êè x ìû íå ìîæåì, ïîñêîëüêó íå áûëè ïðîâåðåíû óñëîâèÿ Ñëåéòåðà. È äåéñòâèòåëüíî, ñ ïîìîùüþ ãåîìåòðè÷åñêîãî ïîñòðîåíèÿ îáëàñòè äîïóñòèìûõ çíà÷åíèé ìîæíî óáåäèòüñÿ,÷òî îíà ñîñòîèò èç åäèíñòâåííîé òî÷êè x. Ñëåäîâàòåëüíî, óñëîâèå Ñëåéòåðà íå âûïîëíåíî,à òî÷êà x ÿâëÿåòñÿ îïòèìàëüíûì ðåøåíèåì (êàê åäèíñòâåííàÿ äîïóñòèìàÿ òî÷êà).Ïðèìåð 3. Ïðîâåðèòü òî÷êè x0 = (−3, 1, 2) è x00 = (−5, 3, 1) íà îïòèìàëüíîñòü â çàäà÷åf (x) = x21 +2x22 +30x1 −16x3 −→ min ïðè îãðàíè÷åíèÿõ 5x1 +3x2 −4x3 = −20, x1 −6x2 +3x3 ≤0, x3 ≥ 0.Ðåøåíèå. Öåëåâàÿ ôóíêöèÿ çàäà÷è âûïóêëà, à îãðàíè÷åíèÿ ëèíåéíû. Ñëåäîâàòåëüíî,èìååì çàäà÷ó âûïóêëîãî ïðîãðàììèðîâàíèÿ, ïðè÷¼ì ïðîâåðêà óñëîâèé ðåãóëÿðíîñòè Ñëåéòåðà íå òðåáóåòñÿ (çàìåòèì, êñòàòè, ÷òî ââèäó íàëè÷èÿ îãðàíè÷åíèÿðàâåíñòâà óñëîâèåÑëåéòåðà î÷åâèäíî íå âûïîëíÿåòñÿ).Ïðåæäå âñåãî, çàïèøåì îãðàíè÷åíèÿ çàäà÷è â ñòàíäàðòíîé ôîðìå, çàìåíèâ îãðàíè÷åíèåðàâåíñòâî íà äâà íåðàâåíñòâà.

Èìååì ϕ1 (x) ≡ 5x1 + 3x2 − 4x3 + 20 ≤ 0, ϕ2 = −ϕ1 (x) ≡−5x1 − 3x2 + 4x3 − 20 ≤ 0, ϕ3 ≡ x1 − 6x2 + 3x3 ≤ 0, ϕ4 (x) ≡ −x3 ≤ 0.Ëåãêî ïðîâåðèòü, ÷òî I(x1 ) = I(x2 ) = {1, 2}. Çíà÷èò, ñèñòåìà (3) äëÿ îáåèõ òî÷åê èìååòâèä −f 0 (x) = y1 ϕ01 (x) + y2 ϕ02 (x) = (y1 − y2 )ϕ01 (x). Ìû èñïîëüçîâàëè óñëîâèå ϕ2 (x) ≡ −ϕ1 (x),êîòîðîå âñåãäà âûïîëíÿåòñÿ ïðè çàìåíå îãðàíè÷åíèéðàâåíñòâ íà äâà íåðàâåíñòâà. Ïîñêîëüêó ðàçíîñòü äâóõ íåîòðèöàòåëüíûõ ÷èñåë ìîæåò ïðèíèìàòü çíà÷åíèÿ ëþáîãî çíàêà, à ëþáîå÷èñëî ìîæíî ïðåäñòàâèòü â âèäå ðàçíîñòè äâóõ íåîòðèöàòåëüíûõ ÷èñåë, òî, îñóùåñòâèâ çàìåíó y = y1 − y2 , ïðèõîäèì ê âûâîäó, ÷òî äëÿ îïòèìàëüíîñòè òî÷êè x∗ ∈ X â ñëó÷àåëèíåéíûõ îãðàíè÷åíèé íåîáõîäèìî è äîñòàòî÷íî ñóùåñòâîâàíèÿ òàêèõ ÷èñåë yj ≥ 0, ñîîòâåòñòâóþùèõ îãðàíè÷åíèÿìíåðàâåíñòâàì, è ïðîèçâîëüíûõ ÷èñåë yj , ñîîòâåòñòâóþùèõîãðàíè÷åíèÿìðàâåíñòâàì, ÷òî24X−f 0 (x∗ ) =yj ϕ0j (x∗ ).j∈I(x∗ )Çàìåòèì, ÷òî îãðàíè÷åíèÿðàâåíñòâà âñåãäà ÿâëÿþòñÿ àêòèâíûìè îãðàíè÷åíèÿìè. ðàññìàòðèâàåìîì ïðèìåðå äëÿ òî÷êè x0 ïîëó÷èì ñèñòåìó −24 = 5y, −4 = 3y, 16 =−4y , êîòîðàÿ, î÷åâèäíî, íåñîâìåñòíà.

Çíà÷èò, òî÷êà x0 íå îïòèìàëüíà.Äëÿ òî÷êè x00 ñèñòåìà ïðèíèìàåò âèä −20 = 5y, −12 = 3y, 16 = −4y , ðåøåíèåì êîòîðîéÿâëÿåòñÿ y = −4. Ïîñêîëüêó ìíîæèòåëü y ñîîòâåòñòâóåò îãðàíè÷åíèþðàâåíñòâó, äëÿ íåãîíåò îãðàíè÷åíèÿ ïî çíàêó. Ñëåäîâàòåëüíî, òî÷êà x00 îïòèìàëüíà.Çàäà÷èÏðîâåðèòü óêàçàííûå òî÷êè íà îïòèìàëüíîñòü â çàäà÷àõ âûïóêëîãî ïðîãðàììèðîâàíèÿ:1) f (x) = −2x21 − 3x22 + x1 − 6 −→ maxX ,X = {x | x21 + x1 − 3 ≤ 0, 2x1 + x2 − 5 ≤ 0, x2 ≥ 0},x1 = (1, 1), x2 = (2, 1), x3 = (1/4, 0), x4 = (0, 0);2) f (x) = x21 + 3x1 −→ minX ,X = {x | x21 + x22 − 2x1 + 8x2 + 16 ≤ 0, x1 − x2 ≤ 5},x1 = (1, −4), x2 = (0, −4), x3 = (2, −4);3) f (x) = 7x21 + 2x22 − x1 x2 + x1 − x2 −→ minX ,X = {x | x1 + x2 ≤ 2, x1 − 3x2 ≤ 4, −2x1 + x2 ≤ −3},x1 = (5/2, −1/2), x2 = (1, −1), x3 = (2, 0);4) f (x) = x21 /2 + x22 − 5x1 + x2 −→ minX ,X = {x | x1 + x2 − 2x3 ≤ 3, 2x1 − x2 − 3x3 ≥ −11, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0},x1 = (1, 0, 2), x2 = (0, 0, −1), x3 = (1, 3, 0), x4 = (2, 1, 1), x5 = (5, 0, 1);5) f (x) = ex1 +x2 + x21 − 2x2 −→ minX ,X = {x | x2 ≤ ln x1 , x1 ≥ 1, x2 ≥ 0},x1 = (2, ln 2), x2 = (e, 0), x3 = (1, 0);6) f (x) = ex1 +x2 + x23 + 2x1 + 2x2 −→ minX ,X = {x | x21 + x22 + x23 ≤ 18, 2x1 + x2 − x3 + 3 ≤ 0},x1 = (−3, 3, 0), x2 = (1, −1, 4), x3 = (−3, −3, 0), x4 = (0, 0, 3);7) f (x) = −5x21 − 6x22 − x23 + 8x1 x2 + x1 −→ maxX ,X = {x | x21 − x2 + x3 ≤ 5, x1 + 5x2 ≤ 8, x1 ≥ 0, x2 ≥ 0},x1 = (0, 0, 0), x2 = (1, 0, 4), x3 = (3/14, 1/7, 0), x4 = (4, 0, −11);8) f (x) = −x21 − 2x22 + x1 x2 − 26 −→ maxX ,X = {x | x21 ≤ 25, x1 + 2x2 − 5 ≤ 0, x2 ≥ 0},x1 = (0, 0), x2 = (−1, 2), x3 = (0, −6), x4 = (3, 0);9) f (x) = 10x21 + 5x22 − x1 + 2x2 − 10 −→ minX ,X = {x | 2x21 + x2 ≤ 4, x1 + x2 ≤ 8, x1 ≥ 0},x1 = (0, 0), x2 = (1, 1), x3 = (0, −1);2510) f (x) = 4x21 + 3x22 + 4x1 x2 − x1 + 6x2 − 5 −→ minX ,X = {x | − x21 − x22 ≥ −3, 3x21 + x2 ≤ 4, x1 ≥ 0, x2 ≥ 0},x1 = (0, 0), x2 = (5, 0), x3 = (1, −1), x4 = (1, 1);11) f (x) = x21 + 5/2x22 − x1 x2 −→ minX ,X = {x | x21 − 4x1 − x2 ≤ −5, −x21 + 6x1 − x2 ≥ 7},x1 = (2, 1), x2 = (3, 2).4.

Ëèíåéíîå ïðîãðàììèðîâàíèå4.1. Ðàçëè÷íûå ôîðìû çàäà÷è ëèíåéíîãî ïðîãðàììèðîâàíèÿÂâåä¼ì îáîçíà÷åíèÿ I = {1, . . . , m}, J = {1, . . . , n}, I1 , I2 ⊂ I, J1 ⊂ J, I1 ∪ I2 =I, I1 ∩ I2 = ∅. Ïóñòü çàäàíû âåùåñòâåííûå ÷èñëà cj , bi , aij (i ∈ I, j ∈ J).Òðåáóåòñÿ íàéòè ìèíèìóì ïî x ôóíêöèèw(x) =nXcj xj(1)j=1ïðè óñëîâèÿõai x − bi ≥ 0, i ∈ I1 ;(2)ai x − bi = 0, i ∈ I2 ;(3)xj ≥ 0, j ∈ J1 .(4)Çäåñü ai = (ai1 , . . . , ain ) i-ÿ ñòðîêà ìàòðèöû îãðàíè÷åíèé A, i ∈ I è x = (x1 , . .

. , xn )> âåêòîð ïåðåìåííûõ çàäà÷è.Çàäà÷à (1)(4) íàçûâàåòñÿ çàäà÷åé ëèíåéíîãî ïðîãðàììèðîâàíèÿ, çàäàííîé â îáùåé ôîðìå.Íàðÿäó ñ îáùåé ôîðìîé èñïîëüçóþòñÿ òàêæå êàíîíè÷åñêàÿ è ñòàíäàðòíàÿ ôîðìû. Êàêâ êàíîíè÷åñêîé, òàê è â ñòàíäàðòíîé ôîðìå âñå ïåðåìåííûå â ëþáîì äîïóñòèìîì ðåøåíèèäîëæíû ïðèíèìàòü íåîòðèöàòåëüíûå çíà÷åíèÿ, ò.

å. J1 = J . Òàêèå ïåðåìåííûå íàçûâàþòñÿíåîòðèöàòåëüíûìè â îòëè÷èå îò òàê íàçûâàåìûõ ñâîáîäíûõ ïåðåìåííûõ, íà êîòîðûå ïîäîáíîå îãðàíè÷åíèå íå íàêëàäûâàåòñÿ. Ïðè ýòîì â êàíîíè÷åñêîé ôîðìå çàäà÷è I1 = ∅, à âñòàíäàðòíîé I2 = ∅.Èñïîëüçóÿ ìàòðè÷íóþ çàïèñü, çàäà÷ó ëèíåéíîãî ïðîãðàììèðîâàíèÿ â êàíîíè÷åñêîé ôîðìå ìîæíî ïðåäñòàâèòü ñëåäóþùèì îáðàçîì:w(x) = cx → min,(5)Ax = b,(6)x ≥ 0,(7)ãäå c = (c1 , . . . , cn ) âåêòîðñòðîêà, x è b = (b1 , .

. . , bm )> âåêòîðñòîëáöû, à A = (aij ) ìàòðèöà ðàçìåðíîñòè m × n.Çàäà÷à ëèíåéíîãî ïðîãðàììèðîâàíèÿ â ñòàíäàðòíîé ôîðìå òîãäà çàïèøåòñÿ òàê:w(x) = cx → min,Ax ≥ b,x ≥ 0.26Çàäà÷à ËÏ â îáùåé ôîðìå ñâîäèòñÿ ê çàäà÷å ËÏ â êàíîíè÷åñêîé èëè ñòàíäàðòíîé ôîðìå. Ïîä ýòèì ïîíèìàåòñÿ ñóùåñòâîâàíèå îáùåãî ñïîñîáà ïîñòðîåíèÿ ïî èñõîäíîé çàäà÷å,çàäàííîé â îáùåé ôîðìå, íîâîé çàäà÷è ËÏ â íóæíîé íàì ôîðìå, ëþáîå îïòèìàëüíîå ðåøåíèå êîòîðîé ïðåîáðàçóåòñÿ â îïòèìàëüíîå ðåøåíèå èñõîäíîé çàäà÷è è íàîáîðîò. Òåì ñàìûì,íå òåðÿÿ îáùíîñòè, ìîæíî çàíèìàòüñÿ èçó÷åíèåì çàäà÷è ËÏ, ïðåäñòàâëåííîé, íàïðèìåð, âêàíîíè÷åñêîé ôîðìå.Ðàññìîòðèì íà ïðîñòûõ ïðèìåðàõ íåñêîëüêî ìåòîäîâ, ïîçâîëÿþùèõ ñäåëàòü òàêîå ïðåîáðàçîâàíèå çàäà÷è. Ïðåæäå âñåãî, íåñêîëüêî îáùèõ çàìå÷àíèé:1.

Ëþáàÿ çàäà÷à, â êîòîðîé òðåáóåòñÿ íàéòè ìàêñèìóì öåëåâîé ôóíêöèè, ñâîäèòñÿ êçàäà÷å íà ìèíèìóì óìíîæåíèåì öåëåâîé ôóíêöèè íà −1.2. Ëþáîå îãðàíè÷åíèåíåðàâåíñòâî âèäànXaij xj ≤ bij=1óìíîæåíèåì íà −1 ïðèâîäèòñÿ ê íåðàâåíñòâónXa0ij xj ≥ b0i ,j=1ãäå a0ij = − aij , b0i = − bi .3. Ëþáîå îãðàíè÷åíèåíåðàâåíñòâî âèäànXaij xj ≥ bij=1ñâîäèòñÿ ê ðàâåíñòâó ââåäåíèåì íîâîé íåîòðèöàòåëüíîé ïåðåìåííîé. Äëÿ ýòîãî äîñòàòî÷íîïîëîæèòünXyi =aij xj − bi ≥ 0.j=1Òîãäà ïîëó÷àåì îãðàíè÷åíèåðàâåíñòâînXaij xj − yi = bi ,j=1ïðè ýòîì, î÷åâèäíî, èñõîäíîå íåðàâåíñòâî ïðèíèìàåò âèä yi ≥ 0.4. Ëþáîå îãðàíè÷åíèåðàâåíñòâînXaij xj = bij=1ìîæíî ïðåäñòàâèòü â âèäå äâóõ íåðàâåíñòânXj=1aij xj ≥ bi ,nXaij xj ≤ bi .j=15.

Ëþáàÿ ñâîáîäíàÿ ïåðåìåííàÿ xj ìîæåò áûòü ïðåäñòàâëåíà ðàçíîñòüþ äâóõ íåîòðèöàòåëüíûõ ïåðåìåííûõ:xj = x1j − x2j , ãäå x1j ≥ 0, x2j ≥ 0.27Ïðèìåð 1. Ïðèâåñòè ê êàíîíè÷åñêîé ôîðìå (5)(7) çàäà÷óx1 + x2 → max,2x1 + x2 ≥ 1,x1 − x2 ≤ 0,x1 ≥ 0.Ðåøåíèå. Ñâîäèì èñõîäíóþ çàäà÷ó ê çàäà÷å íà ìèíèìóì, óìíîæèâ öåëåâóþ ôóíêöèþíà −1. Ïîëó÷èìw(x) = −x1 − x2 .Çàïèøåì îãðàíè÷åíèÿíåðàâåíñòâà â âèäå ðàâåíñòâ, ââåäÿ íîâûå íåîòðèöàòåëüíûå ïåðåìåííûå x3 ≥ 0, x4 ≥ 0 :2x1 + x2 − x3 = 1,x1 − x2 + x4 = 0.Çàìåíèì ñâîáîäíóþ ïåðåìåííóþ x2 ðàçíîñòüþ äâóõ íåîòðèöàòåëüíûõ ïåðåìåííûõ x5 ≥0, x6 ≥ 0 :x2 = x5 − x6 .Ïîñëå ýòèõ ïðåîáðàçîâàíèé èñõîäíàÿ çàäà÷à çàïèøåòñÿ â êàíîíè÷åñêîé ôîðìå:−x1 − x5 + x6 → min,2x1 − x3 + x5 − x6 = 1,x1 + x4 − x5 + x6 = 0,xi ≥ 0 (i = 1, 3, 4, 5, 6).Ïðèìåð 2.

Ïðèâåñòè ê ñòàíäàðòíîé ôîðìå çàïèñè çàäà÷ów(x) = 2x1 − x2 → min,x1 − x2 ≤ 1,2x1 + x2 = 2,x2 ≥ 0.Ðåøåíèå. Çàìåíèì ñâîáîäíóþ ïåðåìåííóþ x1 ðàçíîñòüþ äâóõ íåîòðèöàòåëüíûõ ïåðåìåííûõ x3 ≥ 0, x4 ≥ 0 :x1 = x3 − x4 .Çàïèøåì îãðàíè÷åíèåðàâåíñòâî â âèäå äâóõ íåðàâåíñòâ:2x1 + x2 ≤ 2,2x1 + x2 ≥ 2.Ïîñëå ýòîãî èñõîäíàÿ çàäà÷à ìîæåò áûòü çàïèñàíà â ñòàíäàðòíîé ôîðìå:−x2 + 2x3 − 2x4 → min,−x2 + x3 − x4 ≤ 1,x2 + 2x3 − 2x4 ≤ 2,−x2 − 2x3 + 2x4 ≤ −2,x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.Çàäà÷è1.

Характеристики

Тип файла
PDF-файл
Размер
473,74 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее