Главная » Просмотр файлов » 1612726871-fd1970eb57207f2e4883f7549db906ce

1612726871-fd1970eb57207f2e4883f7549db906ce (828573), страница 2

Файл №828573 1612726871-fd1970eb57207f2e4883f7549db906ce (Ларин, Плясунов - Примеры и задачи) 2 страница1612726871-fd1970eb57207f2e4883f7549db906ce (828573) страница 22021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Çäåñü è äàëååçàïèñü ”i = 1, n” ñëåäóåò ÷èòàòü "äëÿ âñåõ i ∈ {1, . . . , n}";x > y îçíà÷àåò, ÷òî xi > yi , (i = 1, n);x 6= y îçíà÷àåò, ÷òî xi 6= yi õîòÿ áû äëÿ îäíîãî èíäåêñà i;f 0 (x) ãðàäèåíò ñêàëÿðíîé ôóíêöèè f (x) â òî÷êå x:(f 0 (x))> = (∂f (x) ∂f (x)∂f (x),,...,).∂x1∂x2∂xnÄëÿ ôîðìóëèðîâàíèÿ îáùåé çàäà÷è îïòèìèçàöèè íåîáõîäèìî çàäàòü:1) ïðîñòðàíñòâî X ;2) ìíîæåñòâî (âîçìîæíî, ñîâïàäàþùåå ñî âñåì ïðîñòðàíñòâîì) X ⊂ X ;3) îòîáðàæåíèå f : X −→ E1 ;4) êðèòåðèé (ìàêñèìóì èëè ìèíèìóì).Òîãäà çàäà÷ó ìèíèìèçàöèè (ìàêñèìèçàöèè) ìîæíî çàïèñàòü òàêèì îáðàçîì:5f (x) −→ minx∈X⊂X(f (x) −→ max ).x∈X⊂XÎáû÷íî èçâåñòíî, î êàêîì ïðîñòðàíñòâå X èä¼ò ðå÷ü, è ïèøóò ïðîñòîf (x) −→ min (f (x) −→ max).x∈Xx∈X(1)Ðåøèòü çàäà÷ó ìèíèìèçàöèè îçíà÷àåò:1) ëèáî íàéòè òàêóþ òî÷êó x∗ ∈ X , ÷òî f (x∗ ) ≤ f (x) äëÿ âñåõ x ∈ X ; â ýòîì ñëó÷àåïèøåìf (x∗ ) = min f (x);x∈X2) ëèáî, åñëè òàêîé òî÷êèx∗íå ñóùåñòâóåò, íàéòèf ∗ = inf f (x);x∈X3) ëèáî äîêàçàòü, ÷òî ôóíêöèÿ f (x) íåîãðàíè÷åíà ñíèçó íà ìíîæåñòâå X, ò.

å. f ∗ = −∞;4) ëèáî óñòàíîâèòü, ÷òî X = ∅. ñèëó î÷åâèäíîãî ðàâåíñòâàmax f (x) = − min(−f (x)),x∈Xx∈Xíå òåðÿÿ îáùíîñòè, ìîæíî ðàññìàòðèâàòü òîëüêî ìíîæåñòâî çàäà÷ íà ìèíèìóì. Çàìåòèì,÷òî äëÿ îáîçíà÷åíèÿ ìàêñèìóìà è ìèíèìóìà èìååòñÿ îáúåäèíÿþùèé èõ òåðìèí ýêñòðåìóì. Çàïèñü f (x) −→ extrX îçíà÷àåò, ÷òî èùåòñÿ è ìàêñèìóì, è ìèíèìóì ôóíêöèè f (x).Ïðè ýòîì òî÷êè, â êîòîðûõ äîñòèãàåòñÿ ýêñòðåìóì, íàçûâàþòñÿ ýêñòðåìàëüíûìè òî÷êàìè.Ìíîæåñòâî X â çàäà÷å (1) íàçûâàåòñÿ äîïóñòèìûì ìíîæåñòâîì, à åãî ýëåìåíòû äîïóñòèìûìè òî÷êàìè. êîíå÷íîìåðíîì ñëó÷àå X = En , à äîïóñòèìîå ìíîæåñòâî X îáû÷íî çàäà¼òñÿ â òàêîìâèäå:X = {x | ϕj (x) ≤ 0, j = 1, m},(2)ãäå ϕj (x), j = 1, m çàäàííûå ñêàëÿðíûå ôóíêöèè. Çàäà÷à (1)(2) íàçûâàåòñÿ îñíîâíîéçàäà÷åé ìàòåìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ. Íåðàâåíñòâà ϕj (x) ≤ 0, îïðåäåëÿþùèå äîïóñòèìîå ìíîæåñòâî, íàçûâàþòñÿ îãðàíè÷åíèÿìè. Ôóíêöèþ f (x) íàçûâàþò öåëåâîé ôóíêöèåé,à òî÷êó x∗ îïòèìàëüíûì ðåøåíèåì çàäà÷è (1)(2), èëè îïòèìàëüíîé òî÷êîé, èëè òî÷êîé ãëîáàëüíîãî ìèíèìóìà ôóíêöèè f (x) íà ìíîæåñòâå X .

Ïðè ýòîì ÷àñòî èñïîëüçóþòîáîçíà÷åíèå x∗ = argmin{f (x) | x ∈ X}. Ìíîæåñòâî âñåõ îïòèìàëüíûõ òî÷åê îáîçíà÷èì÷åðåç X ∗ = Argmin{f (x) | x ∈ X}. Î÷åâèäíî, ÷òîX ∗ = {x∗ ∈ X | f (x∗ ) = min f (x)}.x∈XÒî÷êà x ∈ X íàçûâàåòñÿ òî÷êîé ëîêàëüíîãî ìèíèìóìà ôóíêöèè f , åñëè ñóùåñòâóåòòàêîå ε > 0, ÷òî f (x) ≤ f (y) äëÿ âñåõ y ∈ X ∩Uε (x).

Î÷åâèäíî, ÷òî âñÿêàÿ òî÷êà ãëîáàëüíîãîìèíèìóìà ÿâëÿåòñÿ òî÷êîé ëîêàëüíîãî ìèíèìóìà. Îáðàòíîå óòâåðæäåíèå, âîîáùå ãîâîðÿ,íåâåðíî.Çàäà÷à ìèíèìèçàöèè (1) íàçûâàåòñÿ çàäà÷åé áåçóñëîâíîé ìèíèìèçàöèè, åñëè X = En .Åñëè ìíîæåñòâî X èìååò âèä (2), òî çàäà÷à (1)(2) íàçûâàåòñÿ çàäà÷åé óñëîâíîé ìèíèìèçàöèè. Ïðè ýòîì íåâàæíî, ñîâïàäàåò ëè ìíîæåñòâî X ñ En èëè íåò. Íàïðèìåð, çàäà÷à (1)(2)ñ X = {x | − x2 ≤ 0} ñ÷èòàåòñÿ çàäà÷åé óñëîâíîé ìèíèìèçàöèè.6Ïðè ðåøåíèè êîíå÷íîìåðíûõ çàäà÷ îïòèìèçàöèè â ðÿäå ñëó÷àåâ ìîæåò îêàçàòüñÿ ïîëåçíîé ñëåäóþùàÿ òåîðåìà:Òåîðåìà Âåéåðøòðàññà.

Åñëè ôóíêöèÿ f (x) îïðåäåëåíà è íåïðåðûâíà íà çàìêíóòîìîãðàíè÷åííîì ìíîæåñòâå X , òî îíà äîñòèãàåò íà ýòîì ìíîæåñòâå ñâîèõ òî÷íûõ âåðõíåé è íèæíåé ãðàíèö.Äðóãèìè ñëîâàìè, ïðè âûïîëíåíèè óñëîâèé òåîðåìû âñåãäà ñóùåñòâóþò òàêèå òî÷êè x0è x00 ìíîæåñòâà X , ÷òî f (x0 ) ≤ f (x) ≤ f (x00 ) äëÿ âñåõ x ∈ X. Ñ ïîìîùüþ òåîðåìû Âåéåðøòðàññà ìîæíî èíîãäà îïðåäåëÿòü, äîñòèãàåò ëè ôóíêöèÿ ñâîåãî ãëîáàëüíîãî ìèíèìóìà èìàêñèìóìà èëè íåò.Ïðèìåð. Ïðè êàêèõ çíà÷åíèÿõ ïàðàìåòðîâ a è b ôóíêöèÿ f (x, y) = x + ay äîñòèãàåòñâîåãî ìèíèìóìà íà ìíîæåñòâå X = {(x, y) | bx2 − 2xy + y 2 ≤ 1}?Ðåøåíèå.

ßñíî, ÷òî ôóíêöèÿ f íåïðåðûâíà ïðè ëþáîì a. Ïîñêîëüêó X = {(x, y) | (x −y)2 + (b − 1)x2 ≤ 1}, òî ïðè b > 1 ìíîæåñòâî X ÿâëÿåòñÿ ýëëèïñîì è ïî òåîðåìå Âåéåðøòðàññà f äîñòèãàåò ñâîåãî ìèíèìóìà. Ïðè a = −1 è b = 1 ïîëó÷èì, ÷òî f (x, y) = x − y ,à X = {(x, y) | − 1 ≤ (x − y) ≤ 1}. ßñíî, ÷òî ìèíèìàëüíîå çíà÷åíèå ôóíêöèè, ðàâíîå −1,äîñòèãàåòñÿ. Ïîêàæåì, ÷òî ïðè âñåõ îñòàëüíûõ çíà÷åíèÿõ ïàðàìåòðîâ a è b ìèíèìóì íåäîñòèãàåòñÿ. Åñëè b ≤ 1 è a 6= −1, òî òî÷êè âèäà y = x áóäóò äîïóñòèìûìè ïðè ëþáîìx. Ïðè ýòîì ôóíêöèÿ f (x, x) = (a + 1)x ïîëó÷àåòñÿ íåîãðàíè÷åííîé ñíèçó: åñëè a < −1,òî f (x, x) −→ −∞ ïðè x −→ +∞, à åñëè a > −1,√ òî f (x, x) −→ −∞ ïðè x −→ −∞.Íàêîíåö, â ñëó÷àå b < 1, a = −1 ïîëîæèì y = (1 − 1 − b)x.

Íåòðóäíî çàìåòèòü, ÷òî òîãäà2(x − y)2 + (b − 1)x2 = (1 − b)x2 +√(b − 1)x = 0, ò. å. òàêèå òî÷êè ÿâëÿþòñÿ äîïóñòèìûìè ïðèëþáîì x. Íî f (x, y) = x − y = 1 − bx −→ −∞ ïðè x −→ −∞.Òàêèì îáðàçîì, ôóíêöèÿ f äîñòèãàåò ñâîåãî ìèíèìóìà íà ìíîæåñòâå X òîëüêî ïðè b > 1è ëþáîì a èëè ïðè b = 1 è a = −1.Çàäà÷è1. Ïóñòü ôóíêöèè f (x) è g(x) äîñòèãàþò ãëîáàëüíîãî ìèíèìóìà íà ìíîæåñòâå X . Âåðíî ëè, ÷òî ôóíêöèÿ h(x) = f (x) + g(x) òàêæå äîñòèãàåò ãëîáàëüíîãî ìèíèìóìà íà ýòîììíîæåñòâå?2.

Ïðè êàêèõ çíà÷åíèÿõ ïàðàìåòðà a ôóíêöèÿ f (x) = (a + 1)x + a ln x − 2 sin x äîñòèãàåòãëîáàëüíîãî ìèíèìóìà íà ìíîæåñòâå ïîëîæèòåëüíûõ ÷èñåë?3. Ïðè êàêèõ çíà÷åíèÿõ ïàðàìåòðà a ôóíêöèÿ f (x, y) = (a − 2)(a − 3)ex + |y + 10|/(y 2 + 1)äîñòèãàåò ãëîáàëüíîãî ìèíèìóìà íà ìíîæåñòâå X = {(x, y) | (a − 4)x2 + y 2 ≤ 1}?2. Çàäà÷è íåëèíåéíîãî ïðîãðàììèðîâàíèÿ äàííîé ãëàâå ðàññìàòðèâàþòñÿ îáùèå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîãî ïðîãðàììèðîâàíèÿ, îñíîâàííûå íà çíàíèÿõ, ïîëó÷åííûõ ñòóäåíòàìè â êóðñå ìàòåìàòè÷åñêîãîàíàëèçà. Ïðè ýòîì ïðåäïîëàãàåòñÿ, ÷òî âñå ôóíêöèè íåïðåðûâíû è èìåþò íåïðåðûâíûåïðîèçâîäíûå ñîîòâåòñòâóþùåãî ïîðÿäêà.2.1.

Îäíîìåðíûé ñëó÷àéÈìååì çàäà÷óf (x) −→ extrx∈X ,ãäå X ⊂ E1 ñîâîêóïíîñòü îòðåçêîâ, èíòåðâàëîâ, ïîëóèíòåðâàëîâ.Òåîðåìà Ôåðìà. Ïóñòü ôóíêöèÿ f (x) äèôôåðåíöèðóåìà â íåêîòîðîì ïðîìåæóòêåX è âî âíóòðåííåé òî÷êå x∗ ýòîãî ïðîìåæóòêà ïðèíèìàåò íàèáîëüøåå (íàèìåíüøåå)çíà÷åíèå. Òîãäà f 0 (x∗ ) = 0.7Òàêèì îáðàçîì, ýêñòðåìóì äèôôåðåíöèðóåìîé ôóíêöèè ñëåäóåò èñêàòü â ñòàöèîíàðíûõ òî÷êàõ, ò.

å. â òåõ òî÷êàõ, ãäå ïðîèçâîäíàÿ ôóíêöèè ðàâíà íóëþ. Êðîìå òîãî, "ïîäîçðèòåëüíûìè"íà ýêñòðåìóì ÿâëÿþòñÿ òî÷êè, íå ïîäïàäàþùèå ïîä äåéñòâèå òåîðåìû Ôåðìà, àèìåííî: ãðàíè÷íûå òî÷êè, òî÷êè ðàçðûâà ôóíêöèè è òî÷êè ðàçðûâà ïðîèçâîäíîé.Ïðàâèëî íàõîæäåíèÿ ãëîáàëüíîãî ýêñòðåìóìà. Äëÿ íàõîæäåíèÿ ãëîáàëüíîãî ýêñòðåìóìà ôóíêöèè f (x) íà ìíîæåñòâå X ⊂ E1 íóæíî íàéòè ñëåäóþùèå ìíîæåñòâà òî÷åê:1) ìíîæåñòâî ñòàöèîíàðíûõ òî÷åê X1 = {x ∈ X | f 0 (x) = 0};2) ìíîæåñòâî òî÷åê ðàçðûâà ôóíêöèè X2 = {x ∈ X | f (x) ðàçðûâíà };3) ìíîæåñòâî òî÷åê ðàçðûâà ïðîèçâîäíîé X3 = {x ∈ X | f 0 (x) ðàçðûâíà };4) ìíîæåñòâî ãðàíè÷íûõ òî÷åê (â òîì ÷èñëå è òî÷êè ±∞, åñëè îíè ïðèíàäëåæàòäîïóñòèìîìó ìíîæåñòâó) X4 = FrX = X \ IntX .Ïîñëå ýòîãî íåîáõîäèìî âû÷èñëèòü çíà÷åíèÿ ôóíêöèè â ýòèõ òî÷êàõ è âûáðàòü ñðåäèíèõ íàèáîëüøåå è íàèìåíüøåå çíà÷åíèÿ.

Åñëè ñîîòâåòñòâóþùèå òî÷êè ïðèíàäëåæàòìíîæåñòâó X , òî ìèíèìóì èëè ìàêñèìóì äîñòèãàåòñÿ íà ìíîæåñòâå X .  ïðîòèâíîìñëó÷àå èìååì òî÷íóþ íèæíþþ èëè âåðõíþþ ãðàíèöû.Ñôîðìóëèðîâàííîå ïðàâèëî ïîçâîëÿåò èññëåäîâàòü íà ýêñòðåìóì äîñòàòî÷íî øèðîêèéêëàññ ôóíêöèé.Ïðèìåð 1. Íàéòè ýêñòðåìóì ôóíêöèè f (x) = x2/3 − (x2 − 1)1/3 .Ðåøåíèå. Ïðîèçâîäíàÿ2 (x2 − 1)2/3 − x4/3f 0 (x) =3 x1/3 (x2 − 1)2/3íåïðåðûâíà âåçäå, êðîìå òî÷åê x = 0 è x = ±1. Äëÿ íàõîæäåíèÿñòàöèîíàðíûõ òî÷åê ïðè√ðàâíèâàåì íóëþ ÷èñëèòåëü ïðîèçâîäíîé è ïîëó÷àåì x = ± √2/2. Òàêèìîáðàçîì, ïîäîçðè√òåëüíûìè íà ýêñòðåìóì ÿâëÿþòñÿ òî÷êè ìíîæåñòâ X1 = {− 2/2, 2/2} è X3 = {−1, 0, 1}.Ïðè ýòîì X2 = ∅, à íà ãðàíèöå ìíîæåñòâà X = E1 èìååìlim f (x) = lim f (x) = 0.x→+∞x→−∞√Âû÷èñëèìçíà÷åíèåôóíêöèèâíàéäåííûõòî÷êàõ:f(−1)=f(0)=f(1)=1,f(−2/2) =√√3f ( 2/2)=2/2.Òàêèìîáðàçîì,íàèáîëüøååçíà÷åíèåôóíêöèèf(x)äîñòèãàåòñÿâòî÷êàõ√x = ± 2/2.

Íàèìåíüøåãî çíà÷åíèÿ ôóíêöèÿ íå èìååò, à inf f (x) = 0.Çàìå÷àíèå. Ïîñêîëüêó ôóíêöèÿ f (x) ÿâëÿåòñÿ ÷¼òíîé (ò. å. f (x) = f (−x)), òî äîñòàòî÷íî áûëî èññëåäîâàòü å¼ íà èíòåðâàëå [0, ∞).Ïðèìåð 2. Íàéòè íàèáîëüøåå è íàèìåíüøåå çíà÷åíèå ôóíêöèèf (x) =x2 − 5x + 6.x2 + 1Ðåøåíèå. Ïðîèçâîäíàÿ ôóíêöèè f (x) åñòü5x2 − 10x − 5.(x2 + 1)2√√√Î÷åâèäíî,÷òî X2 = X3 = ∅, à X1 = {1 − 2, 1 + 2}.

Ïðè ýòîì, f (1 − 2) ≈ 7.04 è√f (1 + 2) ≈ −0.03. Íà ãðàíèöå èìååìf 0 (x) =lim f (x) = lim f (x) = 1.x→+∞x→−∞Òàêèì îáðàçîì, íàèáîëüøåå √çíà÷åíèå ôóíêöèè f (x) äîñòèãàåòñÿ â òî÷êå x1 = 1 −íàèìåíüøåå â òî÷êå x2 = 1 + 2.8√2, àÇàäà÷è1. Íàéòè ýêñòðåìóì ôóíêöèè:1) f (x) = cos3 x + sin3 x ïðè x ∈ E1 ;22) f (x) = (1 + x2 )e−x ïðè x ∈ E1 ;3) f (x) = (x2 − 3x + 2)/(x + 1)2 íà îòðåçêå [−2, 2];4) f (x) = x − 2 sin x ïðè x ∈ [0, +∞);5) f (x) = x2/3 e−x ïðè x ∈ [−1, +∞);6) f (x) = |x|e−|x| ïðè x ∈ [−2, 2];√7) f (x) = x 3 x − 1 ïðè x ∈ [−7, 2];p8) f (x) = x 3 |x| − 1 ïðè x ∈ [−7, 2];9) f (x) = x(x − 2)2/3 ïðè x ∈ [−1, +∞).2.

Äîêàçàòü, ÷òî |3x − x3 | ≤ 2 ïðè |x| ≤ 2.2.2. Ìíîãîìåðíàÿ áåçóñëîâíàÿ îïòèìèçàöèÿÐàññìîòðèì çàäà÷ó íàõîæäåíèÿ ëîêàëüíîãî ýêñòðåìóìà ñêàëÿðíîé ôóíêöèè f (x) ïðèx ∈ En .Íåîáõîäèìîå óñëîâèå ëîêàëüíîãî ýêñòðåìóìà. Ïóñòü ôóíêöèÿ f (x) îïðåäåëåíà,íåïðåðûâíà è íåïðåðûâíî äèôôåðåíöèðóåìà â íåêîòîðîé îêðåñòíîñòè òî÷êè x∗ . Òîãäà, äëÿòîãî ÷òîáû â òî÷êå x∗ äîñòèãàëñÿ ýêñòðåìóì, íåîáõîäèìî âûïîëíåíèå óñëîâèÿ f 0 (x∗ ) = 0.Òî÷êè, óäîâëåòâîðÿþùèå ýòîìó óñëîâèþ, áóäåì íàçûâàòü ñòàöèîíàðíûìè.Êâàäðàòè÷íàÿ ôîðìànn XXaij yi yj(1)i=1 j=1îò ïåðåìåííûõ y1 , . .

Характеристики

Тип файла
PDF-файл
Размер
473,74 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее