Главная » Просмотр файлов » 1612726871-fd1970eb57207f2e4883f7549db906ce

1612726871-fd1970eb57207f2e4883f7549db906ce (828573), страница 10

Файл №828573 1612726871-fd1970eb57207f2e4883f7549db906ce (Ларин, Плясунов - Примеры и задачи) 10 страница1612726871-fd1970eb57207f2e4883f7549db906ce (828573) страница 102021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Âûðàçèì áàçèñíûå ïåðåìåííûå x2 è x3 èç îãðàíè÷åíèé ðàâåíñòâ ÷åðåçíåáàçèñíûå ïåðåìåííûå x1 è x4 . Ïîëó÷èìx2 − 1/2x1 + 1/2x4 = 1,x3 + 1/2x1 + 1/2x4 = 1.Èñêëþ÷èì áàçèñíûå ïåðåìåííûå èç öåëåâîé ôóíêöèè, âûðàçèâ å¼ òîëüêî ÷åðåç íåáàçèñíûåïåðåìåííûå:w(x) = −x1 − 2(1/2x1 − 1/2x4 + 1) − 3(−1/2x1 − 1/2x4 + 1) + x4 = −5 − 1/2x1 + 7/2x4 .Ïðåäñòàâèì ýòî ðàâåíñòâî â óäîáíîì âèäå:−w − 1/2x1 + 7/2x4 = 5.Ñèìïëåêñòàáëèöà èìååò òàêîé èñõîäíûé âèä:−wx2x3x1−1/2−1/21/2511x2010x3001x47/21/21/2Áàçèñ íå ÿâëÿåòñÿ äâîéñòâåííî äîïóñòèìûì, òàê êàê ýëåìåíò z01 = −1/2 îòðèöàòåëåí.Ðàññìàòðèâàåìûé áàçèñ íåâûðîæäåí (z10 = 1, z20 = 1), è, ñëåäîâàòåëüíî, çíà÷åíèå öåëåâîéôóíêöèè ìîæíî óëó÷øèòü. Âçÿâ â êà÷åñòâå âåäóùåãî ïåðâûé ñòîëáåö (s = 1), íàõîäèìâåäóùóþ ñòðîêó: r = 2, òàê êàê òîëüêî z21 = 1/2 > 0. Ïðåîáðàçîâàâ èñõîäíóþ òàáëèöó ñâåäóùèì ýëåìåíòîì z21 , ïðèä¼ì ê íîâîìó áàçèñó B 1 = (A1 , A2 ) è òàáëèöå−wx2x1622x1001x201038x3112x4411Òàê êàê òàáëèöà ÿâëÿåòñÿ äâîéñòâåííî äîïóñòèìîé, òî áàçèñ B 1 îïòèìàëåí è â ñîîòâåòñòâèè ñ òàáëèöåé ïîëó÷àåì, ÷òî x∗ = (2, 2, 0, 0)> è w(x∗ ) = −6, òàê êàê x∗ = (z20 , z10 , 0, 0)> ,w(x∗ ) = −z00 .Ïðèìåð 2.

Ðåøèòü çàäà÷ów(x) = −x1 − 2x2 + x3 − x4 → min,x1 + x2 − 2x3 + 3x4 = 1,2x1 − x2 − x3 + 3x4 = 2,xj ≥ 0, j = 1, 2, 3, 4,>âçÿâ â êà÷åñòâå èñõîäíîãî ðåøåíèÿ òî÷êó³ ´x = (0, 0,³ 1,´ 1) .3Ðåøåíèå. Òàê êàê ñòîëáöû A3 = −2−1 , A4 = 3 ëèíåéíî íåçàâèñèìû, òî èìååì áàçèñB 0 = (A3 , A4 ) è x áàçèñíîå äîïóñòèìîå ðåøåíèå. Ñòðîèì ñèìïëåêñòàáëèöó, ñîîòâåòñòâóþùóþ íóëåâîìó øàãó àëãîðèòìà.

 ðåçóëüòàòå ïðåîáðàçîâàíèé, àíàëîãè÷íûõ ïðåîáðàçîâàíèÿì â ïðèìåðå 1, ïîëó÷èì ðàâåíñòâàx3 + x1 − 2x2 = 1,x4 + x1 − x2 = 1,−w − x1 − x2 = 0,êîòîðûì ñîîòâåòñòâóåò òàáëèöà−wx3x4011x1−111x2−1−2−1x3010x4001Òàê êàê áàçèñ íå ÿâëÿåòñÿ äâîéñòâåííî äîïóñòèìûì (íàïðèìåð, z01 = −1 < 0) è íåâûðîæäåí, òî çíà÷åíèå öåëåâîé ôóíêöèè ìîæíî óëó÷øèòü, âûáðàâ â êà÷åñòâå âåäóùåãîïåðâûé ñòîëáåö (s = 1).

 êà÷åñòâå âåäóùåé ñòðîêè ìîæíî âûáðàòü ëþáóþ èç ñòðîê (r = 1èëè r = 2), ïîñêîëüêó© zi0ªz20z10== 1 = min| zis > 0 .z11z21zisÏóñòü âûáðàíî r = 1, è z11 = 1 âåäóùèé ýëåìåíò. Ïðåîáðàçîâàâ áàçèñ B 0 â áàçèñB 1 = (A1 , A4 ), ïîëó÷èì òàáëèöó−wx1x4B1110x1010x2−3−21x311−1x4001Çäåñü îäíîçíà÷íî â êà÷åñòâå âåäóùåãî ýëåìåíòà âûáèðàåòñÿ z22 = 1. Ïðåîáðàçîâàâ áàçèñâ áàçèñ B 2 = (A1 , A2 ), ïðèäåì ê òàáëèöå−wx1x2110x1010x200139x3−2−1−1x4321Çàìåòèì, ÷òî ïðîèçîøëî òîëüêî èçìåíåíèå áàçèñà.

Ðåøåíèå îñòàëîñü ïðåæíèì x =(1, 0, 0, 0)> . Ýòî ñâÿçàíî ñ òåì, ÷òî ýòî ðåøåíèå âûðîæäåííîå (z02 = 0).  äàííîé òàáëèöåâûáðàòü âåäóùèé ýëåìåíò óæå íå óäàåòñÿ. È íà øàãå 3 àëãîðèòìà âû÷èñëåíèÿ ïðåêðàùàþòñÿ: z03 = −2 < 0 è z13 = z23 = −1 < 0. Öåëåâàÿ ôóíêöèÿ w(x) íå îãðàíè÷åíà ñíèçó íàìíîæåñòâå äîïóñòèìûõ ðåøåíèé.Äàííûé ïðèìåð ïîêàçûâàåò, ÷òî áîëåå ïîäðîáíûé àíàëèç òåêóùåé ñèìïëåêñòàáëèöûìîæåò ïðèâåñòè ê ñóùåñòâåííîìó ñîêðàùåíèþ âû÷èñëåíèé.

Åñëè áû â èñõîäíîé ñèìïëåêñòàáëèöå áûëî áû çàìå÷åíî, ÷òî âî âòîðîì ñòîëáöå íåò ïîëîæèòåëüíûõ ýëåìåíòîâ è z02 =−1 < 0, òî íå ïðèøëîñü áû äâàæäû ìåíÿòü áàçèñ.Ïðèìåð 3. Ðåøèòü çàäà÷ów(x) = −x3 + x4 − x5 + x6 → min,x1 + x3 − 2x4 − 3x5 + 4x6 = 0,x2 + 4x3 − 3x4 − 2x5 + x6 = 0,x3 + x4 + x5 + x6 + x7 = 1,xj ≥ 0, j = 1, 2, .

. . , 7.Ðåøåíèå. Íåòðóäíî çàìåòèòü, ÷òî â êà÷åñòâå èñõîäíîãî ìîæíî âûáðàòü áàçèñ B 0 =(A1 , A2 , A7 ), ïðè ýòîì èìååì áàçèñíîå äîïóñòèìîå ðåøåíèå x = (0, 0, 0, 0, 0, 0, 1)> . Äàííîåðåøåíèå, î÷åâèäíî, âûðîæäåííîå.Òàê êàê áàçèñíûå ïåðåìåííûå x1 , x2 è x7 íå ñîäåðæàòñÿ â öåëåâîé ôóíêöèè è ðàâåíñòâàèìåþò òðåáóåìûé äëÿ ïîñòðîåíèÿ ñèìïëåêñòàáëèöû âèä, òî ñðàçó ïîëó÷àåì ñèìïëåêñòàáëèöó:x1 x2 x3 x4 x5 x6 x7−w 0 00 −1 1 −1 1 0x1 0 101 −2 −3 4 0x2 0 014 −3 −2 1 0x7 1 001111 1Âûáèðàåì s = 3, r = 1 è ïåðåõîäèì ê áàçèñó B 1 = (A2 , A3 , A7 ), ïðè ýòîì áàçèñíîåðåøåíèå íå èçìåíèòñÿ, òàê êàê z01 = 0.−wx3x2x70001x111−4−1x20010x30100x4−1−253x5−4−3104x654−15−3x70001Âûáèðàåì s = 4, r = 2 è ïåðåõîäèì ê áàçèñó B 2 = (A3 , A4 , A7 ).

Áàçèñíîå ðåøåíèå âíîâüíå èçìåíèòñÿ:x1x2x3 x4 x5 x6 x7−w 0 1/51/500 −2 2 0x3 0 −3/5 2/5101 −2 0x4 0 −4/5 1/5012 −3 0x7 1 7/5 −3/5 00 −2 6 1Çäåñü ìîæíî âçÿòü s = 5, r = 1. Áàçèñó B 3 = (A4 , A5 , A7 ) ñîîòâåòñòâóåò òàáëèöà−wx5x4x70001x1−1−3/52/51/5x212/5−3/51/5x321−2240x40010x50100x6−2−212x70001ñ òåì æå áàçèñíûì ðåøåíèåì.Òåïåðü âîçüì¼ì s = 6, r = 2. Ïîëó÷èì áàçèñ B 4 = (A5 , A6 , A7 ) è òàáëèöó−wx5x6x70001x1−1/51/52/5−3/5x2−1/5−4/5−3/57/5x3−2−3−26x4221−2x50100x60010x70001Áàçèñíîå ðåøåíèå è çäåñü íå èçìåíèëîñü.Ïóñòü òåïåðü s = 1, r = 1. Íîâûé áàçèñ B 5 = (A1 , A6 , A7 ) ñ ñîîòâåòñòâóþùåé òàáëèöåé èòåì æå ðåøåíèåì:x1 x2x3x4 x5 x6 x7−w 0 0 −1 −5410 0x1 0 1 −4 −15 1050 0x6 0 014−3 −2 1 0x7 1 0 −1 −3430 1Âûáðàâ s = 2, r = 2, ïðèä¼ì ê áàçèñó B 6 = (A1 , A2 , A7 ) = B 0 , ò. å.

ïðîèçîøåë âîçâðàò êèñõîäíîìó áàçèñó.  ýòîì ñëó÷àå ãîâîðÿò, ÷òî öèêë çàìêíóëñÿ è ïðîèçîøëî çàöèêëèâàíèåàëãîðèòìà. Ðåøåíèå ïîëó÷èòü íå óäàëîñü.Ïðèìåð 4. Ðåøèòü çàäà÷ów(x) = −7x1 − x3 + x4 − x5 → min,x1 − x2 + x3 = 1,2x1 + 2x2 + x3 + x4 + 2x5 = 12,2x1 + x2 + x5 = 4,xj ≥ 0, j = 1, 2, . . . , 5,âçÿâ â êà÷åñòâå èñõîäíîãî áàçèñà B 0 = (A3 , A4 , A5 ).Ðåøåíèå. Ïîäñòàâèì x3 èç ïåðâîãî ðàâåíñòâà è x5 èç òðåòüåãî âî âòîðîå, ïîëó÷èì−3x1 + x2 + x4 = 3.Èñêëþ÷èì áàçèñíûå ïåðåìåííûå x3 , x4 è x5 èç öåëåâîé ôóíêöèè:w(x) = −7x1 − (1 − x1 + x2 ) + (3 + 3x1 − x2 ) − (4 − 2x1 − x2 ) = −2 − x1 − x2 .Ïåðåïåøåì âñå óñëîâèÿ â âèäå, óäîáíîì äëÿ çàïîëíåíèÿ ñèìïëåêñòàáëèöû:x3 + x1 − x2 = 1,x4 − 3x1 + x2 = 3,x5 + 2x1 + x2 = 4,−w − x1 − x2 = 2.Èñõîäíàÿ ñèìïëåêñòàáëèöà, ñîîòâåòñòâóþùàÿ áàçèñó B 0 è äîïóñòèìîìó áàçèñíîìó ðåøåíèþ x = (0, 0, 1, 3, 4)> , èìååò âèä−wx3x4x52134x1−11−32x2−1−11141x30100x40010x50001Òàê êàê èìåþòñÿ îòðèöàòåëüíûå ýëåìåíòû â âåðõíåé ñòðîêå: z01 = z02 = −1, òî òàáëèöàíå ÿâëÿåòñÿ äâîéñòâåííî äîïóñòèìîé.

Ïîýòîìó âûáèðàåì âåäóùèé ñòîëáåö s. Ïóñòü s = 1.Ïîñëå ýòîãî ïåðåõîäèì íà øàã 3. Òàê êàê ìíîæåñòâî {i | zi1 > 0} íå ïóñòî, òî íàõîäèìâåäóùóþ ñòðîêó:nzon1 4oz10i0= 1 = min| zi1 > 0 = min ,.z11zi11 2Òàêèì îáðàçîì, r = 1 è âåäóùèì ÿâëÿåòñÿ ýëåìåíò z11 . Íîâûé áàçèñ B 1 = (A1 , A4 , A5 ).Ïðîâåäÿ ýëåìåíòàðíîå ïðåîáðàçîâàíèå áàçèñà, ïîëó÷èì òàáëèöó−wx1x4x53162x10100x2−2−1−23x3113−2x40010x50001Îíà òàêæå íå ÿâëÿåòñÿ äâîéñòâåííî äîïóñòèìîé.

Îäíîçíà÷íî ïîëó÷àåì s = 2, r = 3. Ïåðåõîäèì ê íîâîìó áàçèñó B 2 = (A1 , A2 , A4 ), êîòîðîìó ñîîòâåòñòâóåò òàáëèöà−wx1x4x213/35/322/32/3x10100x20001x3−1/31/35/3−2/3x40010x52/31/32/31/3 êà÷åñòâå âåäóùåãî òåïåðü âûáèðàåì ýëåìåíò z23 = 5/3, òàê êàê z03 = −1/3 < 0 èz2022z10=<= 5.z235z13 ðåçóëüòàòå ýëåìåíòàðíîãî ïðåîáðàçîâàíèÿ ïåðåõîäèì ê áàçèñó B 3 = (A1 , A2 , A3 ) è òàáëèöå−wx1x3x229/51/522/518/5x10100x20001x30010x41/5x54/5Ïðè ýòîì òàê êàê ïîëó÷èëàñü äâîéñòâåííî äîïóñòèìàÿ òàáëèöà, òî ïîñëå âû÷èñëåíèÿ íóëåâîé ñòðîêè (ýëåìåíòîâ z0j , j = 1, n) äîñòàòî÷íî âû÷èñëèòü ýëåìåíòû íóëåâîãî ñòîëáöàzi0 (i = 0, m) è íà ýòîì çàâåðøèòü ðåøåíèå çàäà÷è.Îïòèìàëüíîå ðåøåíèå ïîëó÷åíî, è îíî ëåãêî îïðåäåëÿåòñÿ èç âû÷èñëåííîé ÷àñòè òàáëèöû: xσ(i) = zi0 , i = 1, m, à âñå íåáàçèñíûå ïåðåìåííûå ðàâíû íóëþ, ïðè ýòîì w(x) = −z00 ,ò. å.

â ðàññìàòðèâàåìîì ñëó÷àå x = (1/5, 18/5, 22/5, 0, 0), w(x) = −29/5.Çàäà÷è1. Ïðèâåñòè çàäà÷ó ê êàíîíè÷åñêîìó âèäó, ðåøèòü åå ñèìïëåêñìåòîäîì è äàòü ãåîìåòðè÷åñêóþ èíòåðïðåòàöèþ êàæäîãî øàãà â ïðîñòðàíñòâå ïåðåìåííûõ:1) −x1 − x2 −→ min,x1 − x2 ≤ 1, 5x1 + x2 ≤ 1,x1 ≥ 0, x2 ≥ 0;422) −x1 + 2x2 −→ min,x1 + x2 ≤ 12, x1 − x2 ≤ 8,x1 ≥ 0, x2 ≥ 0.2. Ðåøèòü çàäà÷ó ñèìïëåêñìåòîäîì, âçÿâ â êà÷åñòâå èñõîäíîãî áàçèñíîãî äîïóñòèìîãîðåøåíèÿ òî÷êó x:1) −6x1 − x2 − 4x3 + 5x4 −→ min,3x1 + x2 − x3 + x4 = 4, 5x1 + x2 + x3 − x4 = 4,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x = (1, 0, 0, 1)> ;2) −x1 − 2x2 − 3x3 + x4 −→ min,x1 − 3x2 − x3 − 2x4 = −4, x1 − x2 + x3 = 0,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x = (0, 1, 1, 0)> ;3) −x1 − x2 − x3 − x4 −→ min,x1 + x2 + x3 + 3x4 = 3, x1 + x2 − x3 + x4 = 1, x1 − x2 + x3 + x4 = 1,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x = (0, 0, 0, 1)> ;4) −x1 − 2x2 − x3 − 3x4 − x5 −→ min,x1 + x2 + 2x4 + x5 = 5, x1 + x2 + x3 + 3x4 + 2x5 = 9, x2 + x3 + 2x4 + x5 = 6,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0,x = (0, 0, 1, 2, 1)> ;5) −x1 + x2 − 2x3 + x4 − x5 −→ min,x1 + x2 + 2x3 + 3x4 − 2x5 = 3, x2 − x3 − x4 − x5 = 0, x1 + x4 − x5 = 0,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0,x = (0, 2, 0, 1, 1)> ;6) −x1 − 2x2 − 2x3 − x4 − 6x5 −→ min,x1 + 3x2 + 3x3 + x4 + 9x5 = 18, x1 + 5x2 + 2x4 + 8x5 = 13, x3 + x5 = 3,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0,x = (0, 1, 2, 0, 1)> ;7) −x1 − x2 − x3 − x4 − x5 −→ min,x1 + x2 + 2x3 = 4, −2x2 − 2x3 + x4 − x5 = −6, x1 − x2 + 6x3 + x4 + x5 = 12,x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0,x = (1, 1, 2, 0, 0)> .434.5 Ëåêñèêîãðàôè÷åñêèé âàðèàíò ïðÿìîãî ñèìïëåêñìåòîäàÝòîò ìåòîä ïîçâîëÿåò óñòðàíèòü çàöèêëèâàíèå è çà êîíå÷íîå ÷èñëî øàãîâ ïîëó÷èòüðåøåíèå.Îïðåäåëåíèå.

Íåíóëåâîé âåêòîð α = (z0 , z1 , . . . , zn ) ëåêñèêîãðàôè÷åñêè áîëüøå íóëÿ(α  0), åñëè ïåðâàÿ îòëè÷íàÿ îò íóëÿ êîìïîíåíòà ïîëîæèòåëüíà: zp > 0, ãäå p = min{i |zi 6= 0}.Åñëè α0 , α00 ∈ En+1 , òî ñ÷èòàåòñÿ, ÷òî âåêòîð α0 ëåêñèêîãðàôè÷åñêè áîëüøå âåêòîðà α000(α  α00 ), åñëè α0 − α00  0.Òåì ñàìûì íà En+1 îïðåäåëåíî îòíîøåíèå ëèíåéíîãî ïîðÿäêà, òàê ÷òî â ëþáîé êîíå÷íîéñîâîêóïíîñòè âåêòîðîâ {αi } èìååòñÿ ëåêñèêîãðàôè÷åñêè ìèíèìàëüíûé âåêòîð, îáîçíà÷àåìûé lex min{αi }.Îïðåäåëåíèå. Ñèìïëåêñòàáëèöà íàçûâàåòñÿ íîðìàëüíîé, åñëè åå ñòðîêè αi = (zi0 ,zi1 , . . . , zin ), i = 1, m, ëåêñèêîãðàôè÷åñêè ïîëîæèòåëüíû.Óòâåðæäåíèå 11. Ëþáóþ ïðÿìî äîïóñòèìóþ ñèìïëåêñòàáëèöó ìîæíî ïðåîáðàçîâàòüâ íîðìàëüíóþ ïóòåì ïåðåíóìåðàöèè ïåðåìåííûõ (ñ ñîîòâåòñòâóþùåé ïåðåñòàíîâêîé ñòîëáöîâ).Ïðè ýòîì î÷åâèäíî, ÷òî íîðìàëüíàÿ ñèìïëåêñòàáëèöà ÿâëÿåòñÿ ïðÿìî äîïóñòèìîé.Îòëè÷èÿ ëåêñèêîãðàôè÷åñêîãî âàðèàíòà ïðÿìîãî ñèìïëåêñìåòîäà îò îáû÷íîãî êàñàþòñÿ òîëüêî 0-ãî è 3-ãî øàãîâ (îñòàëüíûå øàãè îñòàþòñÿ áåç èçìåíåíèé):00 ) Íà÷àòü ñ íîðìàëüíîé ñèìïëåêñòàáëèöû.30 ) Åñëè {i | zis > 0, i ≥ 1} 6= ∅, òî âûáðàòü âåäóùóþ ñòðîêó r:n 1o1αr = lex minαi | zis > 0, i ≥ 1 ,zrszisèíà÷å ÊÎÍÅÖ (çàäà÷à íåðàçðåøèìà).Ýëåìåíòàðíîå ïðåîáðàçîâàíèå áàçèñà ïðè ýòîì ñîõðàíÿåò íîðìàëüíîñòü ñèìïëåêñòàáëèöû.Óòâåðæäåíèå 12.

Характеристики

Тип файла
PDF-файл
Размер
473,74 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее