1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 53
Текст из файла (страница 53)
У взрослого человека среднего возраста систолическое давление в аорте при прямых измерениях равно 110—125 мм рт.ст. Значительное снижение давления происходит в мелких артериях, в артериолах. Здесь давление резко уменьшается, становясь на артериальном конце капилляра равным 20—30 мм рт.ст.
В клинической практике АД определяют обычно в плечевой артерии. У здоровых людей в возрасте 15—50 лет максимальное давление, измеренное способом Короткова, составляет 110—125 мм рт.ст. В возрасте старше 50 лет оно, как правило, повышается. У 60-летних максимальное давление равно в среднем 135—140 мм рт.ст. У новорожденных максимальное артериальное давление 50 мм рт.ст., но уже через несколько дней становится 70 мм рт.ст. и к концу 1-го месяца жизни — 80 мм рт.ст.
Минимальное артериальное давление у взрослых людей среднего возраста в плечевой артерии в среднем равно 60—80 мм рт.ст., пульсовое составляет 35—50 мм рт.ст., а среднее — 90—95 мм рт.ст.
20.4. Движение крови по капиллярам: параметры капилляров, давление и скорость кровотока в них, механизмы обмена веществ между кровью и тканями, понятие о “дежурных “ капиллярах. Рабочая гиперемия (механизм, значение).
Микроциркуляторное русло. Капилляры – это наиболее важный в функциональном отношении отдел кровеносной системы, так как именно в них происходит обмен между кровью и интерстициальной жидкостью. Это обмен происходит также в венулах. Совокупность сосудов от артериол до венул называется микроциркуляторным руслом и рассматривается как общая функциональная единица. Устройство этой системы отвечает двум главным требованиям, предъявляемым к любым обменным устройствам: кровь в капиллярах соприкасается с очень большой поверхностью в течение достаточно длительного времени.
Стенки капилляров состоят только из одного слоя клеток эндотелия, через который происходит диффузия растворенных кровью газов и веществ. Считается, что всех капилляров в большом кругу более 160 миллиардов, поэтому в области капилляров кровяное русло весьма расширено. По данным Крога, 1 мл крови в капиллярах распластывается на поверхности 0,5-0,7 кв.м. Длина каждого отдельного капилляра составляет 0,3-0,7 мм. Форма и величина капилляров в различных тканях и органах неодинаковы, как неодинаково и общее их количество. В тканях с высокой интенсивностью обменных процессов число капилляров на единицу площади больше.
Общая эффективная обменная поверхность микроциркуляторного русла составляет около 100 м2. Если г ткани должно приходится 1,5 м2 обменной поверхности. Фактически плотность капилляров в различных тканях и органах значительно варьирует. Например, на 1 мм3 миокарда, ткани мозга, почек печени приходится от 2500 до 3000 капилляров; в фазных единицах мышечных волокон – 300–400 капилляров, в тонических – до 1000 капилляров на 1 мм3. Кроме того, часть капилляров в норме в покое не функционирует: только в 25–35 % капилляров кровь циркулирует. В каждом органе часть их (дежурные капилляры) пропускают кровь или плазму (плазматические капилляры), часть же полностью закрыта и выключена из кровообращения (резервные капилляры). В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает - т.н. рабочая гиперемия органа.
Давление крови в капиллярах разных сосудистых областей различно. Так, у человека в мышцах оно равно на артериальном конце 35 мм Hg, на венозном - 15 мм Hg. На вершине капилляра ногтевого ложа давление 24 мм Hg. В капиллярах почечных клубочков - 65-70 мм Hg, а в капиллярах почечных канальцев - 14-18 мм Hg, а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт.ст.. В легких - всего 6 мм Hg. Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. Очень невелико давление в капиллярах легких — в среднем 6 мм рт.ст. Измерение капиллярного давления производят в положении тела, при котором капилляры исследуемой области находятся на одном уровне с сердцем. В случае расширения артериол давление в капиллярах повышается, а при сужении понижается.
Рис. 34. Обмен веществ в пределах микроциркуляторного русла.
Скорость кровотока в капиллярах невелика и составляет 0,5— 1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина слоя крови (7—8 мкм) и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.
Строение микроциркуляторного русла такового, что в большинстве случаев истинные капилляры не соединяют прямо артериолы с венулами. Чаще они отходят под прямым углом от метартериол или так называемых основных каналов. В области отхождения капилляров от метартериол имеются гладкомышечные волокна, расположенные особым образом в виде прекапиллярных сфинктеров. Здесь принципиально, что от степени сокращения прекапиллярных сфинктеров будет зависеть, какая часть крови пройдет через истинные капилляры. Это в свою очередь будет вызывать изменение обменной поверхности.
В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть значительно более густая, чем в белом.
Для терминального русла характерно наличие артериовенозных анастомозов, непосредственно связывающих мелкие вены с мелкими артериями или артериолы с венулами. Стенки этих сосудов богаты гладкомышечными волокнами. Артериовенозные анастомозы имеются во многих тканях. Артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этого является изменение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.
Обменные процессы в капиллярах. Капилляры – главное место сосудистого русла, где происходит обмен газами между тканью и кровью, удаляются продукты обмена, осуществляется обмен воды и солей. В капиллярах имеются два основных механизма обмена – диффузия и фильтрация-реабсорбция. Скорость двусторонней диффузии между капиллярами и жидкостью межклеточного пространства очень велика – при прохождении крови через капилляры жидкость плазмы успевает 40 раз полностью обменяться с жидкостью межклеточного пространства. Таким образом, эти две жидкости постоянно перемешиваются. При этом число молекул переходящих во взаимно противоположных направлениях примерно одинаково, поэтому объем плазмы и межклеточной жидкости практически не изменяется. Скорость диффузии через общую обменную поверхность капилляров составляет 85 000 л в сутки.
Структурной и функциональной единицей кровотока в мелких сосудах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.
Путем диффузии обмениваются Na+, Cl-, глюкоза, жирорастворимые вещества типа этанола, О2 и СО2.Второй механизм – фильтрация-реабсорбция. Между объемами жидкости, фильтрующейся в артериальном конце и реабсорбирующейся в венозном, существует динамическое равновесие. Основой равновесия служит разность между гидростатическим и онкотическим давлением. В том случае если это равновесие нарушается, происходит быстрое перераспределение внутрисосудистого и межтканевого объема жидкости.
Фильтрация воды из русла в интерстиций в конце артериального русла возможна, потому что гидростатическое давление, направленное в сторону ткани, больше онкотического давления, направленного в противоположную сторону. В венозном конце гидростатическое давление меньше онкотического, поэтому вода реабсорбируется.
Транскапиллярный обмен совершается через стенку капилляра несколькими способами. В разных капиллярах строение стенки тоже разное - есть капилляры с "дырками", т.н. фенестрами в стенке, и через них обмен происходит в основном за счет фильтрации. Там же, где таких дыр нет, используются механизмы диффузии по градиенту концентрации, осмотические механизмы переноса и особенно механизмы активного транспорта. Но при всех этих способах важнейшее значение имеет градиент давления между капилляром и межтканевой жидкостью - т.н. фильтрационное давление (ФД) , которое равно разнице между гидростатическим давлением в капиллярах и суммой онкотического давления крови и тканевого давления :
ФД = АДкап - (ОД+ТД)
Если принять ОД = 15 мм, ТД = 10 мм, то можно вычислить величину и направление градиента давления на артериальном и венозном концах капилляра.
Рис.2. |
4 |
Э
Рис. 4. |
В настоящее время установлено, что регулирование капиллярного кровообращения осуществляется нервной и гуморальной системами посредством приводящих артерий и артериол, играющих роль кранов для капилляров. Их сужение и расширение может приводить к изменениям распределения крови в ветвящейся капиллярной сети, к изменениям в крови, протекающей по капиллярам, соотношение эритроцитов и плазмы и т.п. При резком расширении артериол, например, в очаге воспаления, капилляры также резко расширяются, и линейная скорость тока крови в них уменьшается. При этом появляются агрегаты эритроцитов внутри капилляров, что повышает местное сопротивление кровотоку вплоть до стаза.
Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом общий кровоток через метартериолы и капилляры определяется сокращением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, расположенных у устья капилляра при его отхождении от метаартериол) определяет, какая часть крови пройдет через истинные капилляры.
Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000—9000 л крови. Через стенку капилляров профильтровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости.
Капилляры различных органов отличаются по своей ультраструктуре, а следовательно, по способности пропускать в тканевую жидкость белки. Так, 1 л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г и в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.