Главная » Просмотр файлов » Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab

Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab (811443), страница 2

Файл №811443 Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab (Moukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab.pdf) 2 страницаMoukalled F., Mangani L., Darwish M. The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab2020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

. . . . . . . . . . . . .3.6.1Conservation of Energy in Terms of SpecificInternal Energy . . . . . . . . . . . . . . . . . . . . .3.6.2Conservation of Energy in Terms of SpecificEnthalpy. . . . . . . . . . . . . . . . . . . . . . . . . .3.6.3Conservation of Energy in Terms of SpecificTotal Enthalpy . . .

. . . . . . . . . . . . . . . . . .3.6.4Conservation of Energy in Termsof Temperature . . . . . . . . . . . . . . . . . . . . .3.7General Conservation Equation . . . . . . . . . . . . . . . . .3.8Non-dimensionalization Procedure . . . .

. . . . . . . . . . .3.9Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . .3.9.1Reynolds Number . . . . . . . . . . . . . . . . . . .3.9.2Grashof Number . . . . . . . . . . . . . . . . . . . .3.9.3Prandtl Number. . . . . . . . . . . . . . . . . . . . .3.9.4Péclet Number . . . . . . . . . . . . . .

. . . . . . .3.9.5Schmidt Number . . . . . . . . . . . . . . . . . . . ..................................2829323233343537383941...............434344..................454647485051525254..........5557.....60.....61.....61.........626567727273737575.....................................................................................Contents3.9.6Nusselt Number3.9.7Mach Number. .3.9.8Eckert Number .3.9.9Froude Number .3.9.10Weber Number .3.10 Closure . . .

. . . . . . . . . .3.11 Exercises . . . . . . . . . . . .References. . . . . . . . . . . . . . . . .xi........................................................................................................................................................................................................77777879798080824The Discretization Process. . . . . . .

. . . . . . . . . . . . . . . . . . .4.1The Discretization Process . . . . . . . . . . . . . . . . . . . . .4.1.1Step I: Geometric and Physical Modeling . . . .4.1.2Step II: Domain Discretization . . . . . . . . . . .4.1.3Mesh Topology. . . . . . . . . . . .

. . . . . . . . . .4.1.4Step III: Equation Discretization . . . . . . . . . .4.1.5Step IV: Solution of the Discretized Equations4.1.6Other Types of Fields . . . . . . . . . . . . . . . . .4.2Closure . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . .....................................858587889093981001015The Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . .5.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.2The Semi-Discretized Equation . . . . . . . . . . . . . . .

. . . .5.2.1Flux Integration Over Element Faces . . . . . . . .5.2.2Source Term Volume Integration. . . . . . . . . . .5.2.3The Discrete Conservation Equationfor One Integration Point . . . . . . . . . . . . . . . .5.2.4Flux Linearization . . . . . . .

. . . . . . . . . . . . . .5.3Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .5.3.1Value Specified (Dirichlet Boundary Condition)5.3.2Flux Specified (Neumann Boundary Condition).5.4Order of Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . .5.4.1Spatial Variation Approximation . . . . . . . .

. . .5.4.2Mean Value Approximation . . . . . . . . . . . . . .5.5Transient Semi-Discretized Equation . . . . . . . . . . . . . . .5.6Properties of the Discretized Equations . . . . . . . . . . . . .5.6.1Conservation. . . . . . . . . . . . .

. . . . . . . . . . . .5.6.2Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . .5.6.3Convergence . . . . . . . . . . . . . . . . . . . . . . . . .5.6.4Consistency . . . . . . . . . . . . . . . . . . . . . . . . .5.6.5Stability . . . . . . . . . . . . . . . . . . .

. . . . . . . . .5.6.6Economy . . . . . . . . . . . . . . . . . . . . . . . . . . .5.6.7Transportiveness . . . . . . . . . . . . . . . . . . . . . .5.6.8Boundedness of the Interpolation Profile . . . . ................103103104105107......................................................108109111111112113113114117118118119119120120120120121xiiContents5.7Variable Arrangement . . . . . . . . . . . .

. . . .5.7.1Vertex-Centered FVM . . . . . . . . .5.7.2Cell-Centered FVM . . . . . . . . . . .5.8Implicit Versus Explicit Numerical Methods .5.9The Mesh Support. . . . . . . . . . . . . . . . . . .5.10 Computational Pointers . . . . . . . . . .

. . . . .5.10.1uFVM . . . . . . . . . . . . . . . . . . . .5.10.2OpenFOAM® . . . . . . . . . . . . . . .5.11 Closure . . . . . . . . . . . . . . . . . . . . . . . . . .5.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . .References. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .67....................................................................................................................................122123124126127128128129133133134The Finite Volume Mesh . . . . . . . . . . . . . . . . . . . . . . .6.1Domain Discretization . . . . . .

. . . . . . . . . . . . . .6.2The Finite Volume Mesh . . . . . . . . . . . . . . . . . .6.2.1Mesh Support for Gradient Computation6.3Structured Grids . . . . . . . . . . . . . . . . . . . . . . . .6.3.1Topological Information . . . . . . . . . . . .6.3.2Geometric Information . . . .

. . . . . . . . .6.3.3Accessing the Element Field . . . . . . . . .6.4Unstructured Grids . . . . . . . . . . . . . . . . . . . . . .6.4.1Topological Information (Connectivities)6.5Geometric Quantities . . . . . . . . . . . . . . . .

. . . . .6.5.1Element Types . . . . . . . . . . . . . . . . . .6.5.2Computing Surface Area and Centroidof Faces . . . . . . . . . . . . . . . . . . . . . . .6.6Computational Pointers . . . . . . . . . . . . . . . . . . .6.6.1uFVM . . . . . . . . . . . . . . . . . . . . . . . .6.6.2OpenFOAM® . . . . . . .

. . . . . . . . . . . .6.7Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.8Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................137137138139142142144145146147152153........................................................154162162164170170170The Finite Volume Mesh in OpenFOAM® and uFVM7.1uFVM . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .7.1.1An OpenFOAM® Test Case . . . . . . . .7.1.2The polyMesh Folder. . . . . . . . . . . . .7.1.3The uFVM Mesh. . . . . . . . . . . . . . . .7.1.4uFVM Geometric Fields. . . . . . .

. . . .7.1.5Working with the uFVM Mesh . . . . . .7.1.6Computing the Gauss Gradient . . . . . .7.2OpenFOAM® . . . . . . . . . . . . . . . . . . . . . . . . .7.2.1Fields and Memory . . . . . . . . . . . . . .7.2.2InternalField Data . . . . . . . . .

. . . . . .........................................................................................173173173175178183187188191197199...........Contentsxiii7.2.3BoundaryField Data . . . .7.2.4lduAddressing . . . . . . . .7.2.5Computing the Gradient .7.3Mesh Conversion Tools . . . . . . . .7.4Closure . . . . . . . . . . . . . . . .

. . .7.5Exercises . . . . . . . . . . . . . . . . . .References. . . . . . . . . . . . . . . . . . . . . . .............................200200202204205205207Spatial Discretization: The Diffusion Term. . . . . . . . . . . . . . .8.1Two-Dimensional Diffusion in a Rectangular Domain . . .8.2Comments on the Discretized Equation . . . . . . . . . . . . .8.2.1The Zero Sum Rule . .

. . . . . . . . . . . . . . . . . .8.2.2The Opposite Signs Rule . . . . . . . . . . . . . . . .8.3Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .8.3.1Dirichlet Boundary Condition . . . . . . . . . . . . .8.3.2Von Neumann Boundary Condition . . . . . . . . .8.3.3Mixed Boundary Condition . . . . .

. . . . . . . . .8.3.4Symmetry Boundary Condition . . . . . . . . . . . .8.4The Interface Diffusivity . . . . . . . . . . . . . . . . . . . . . . .8.5Non-Cartesian Orthogonal Grids . . . . . . . . . . . . . . . . . .8.6Non-orthogonal Unstructured Grid. . . . . . . . . . . . . . . . .8.6.1Non-orthogonality . . . . . . . . .

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее