karlov-kirichenko-kvantovaya-mekhanika-2016 (810755), страница 11
Текст из файла (страница 11)
! "!- "( !* 7 !( 0 . a ! ( Z = 1 " ! "- (E∼ea2= 1,72 · 107 ?>?= = 5, 15 · 109 %/ .* - &8 & . <& '"4 "!"#& ! 05*! & cC " ( "! #; "( E < 0 ! ""' .!6"#& ( A C 2! ( !?!! !41 &! ; ( I< "' 2- & !- ! '- 0 &.! 2- ! KK /- 0( -" '0" !& '-& ! "-& "( 26( '. ! ! " θ ϕ =! '-! -! 5 1 !(( 41! "# 9 " 5"( '5 KK *(1& I"" 5! ( Δ=AN9 0' 0"#;& !#4 0"4! "!5 *(1 ( 5* '* 0!* ?!;4 AN !# "#& " ! ! '54 IA< & !! ** !( @ '" # !( 0J.( !# 6"5& ( ' !& !5* ! C "- !5AI∂2 5 "- d2 Ψdr 2+1 dΨr dr++∂ r22m2 ∂2IIr ∂rE+Ze2rIKΨ = 0.'.' ! -! 5 -!5 ' !# Ψ.26 ! " θ ϕ! -!5 " ( c '" #' 5 055* '5*% 0'-(σ=2mZe22, k2 = −2mE2I ./- -! k2 > 0 9 IK ! 2σrrΨ + Ψ + Ψ = k2 Ψ,I ;!* '-! 226 r !05 '-!# ;( ! ( 264IF (r) = rΨ(r) -! ! !ΔΨ(r) =d2 Ψdr 2+2 dΨr dr≡1 d2 (rΨ)rdr 2=1 d2 Fr dr 2.,- 9- M ( : "+& AIN9-0- 5( 5)( ( 9 I !! (MσF + F = k2 F.rI," '! -! r → ∞ ! " "& - ! .! '5! ( "5 4 "5 !(1 & - ! <! !& 0" ! 26( F (r) "!(! 4F = k2 F,IN !"#5* s "- ! !; ('541 ".!"#5 226!5 ( KKMAs+1 =As+1 ≈IO2ks − σs(s + 1)2ks9 0' 5 ;" !"4 "& 26 "4.1 M1Ψ(r) = e−kr f (r).KAr< ! KB I ! 4 "( 26 f (r)Mσf − 2k f + f = 0.rKIC ; 1 ! (Mf (r) =∞As r s .f (r) − f0 (r) ∼K.1s!(2kr)s = e2kr .Krr ! !-! !04 - ! "& 26 5"5 "4-!# 05 !6 ,"( ! 5 "5 0!#( KK " ! -!05 226!5 As !!- 0"#; s > n 0!" # "# < ! 26( f (r) ! ( " ! n /01 "# 226! An+1 * ".41* ' " ! (2kn − σ = 0KKKN" " I En = −me4 Z 222 n2,KOn = 1, 2, 3, .
. ./!! -! ! 5 !- ! ! 5 A"-5 "!& ! @! 5 ;" !4 !- * & ! .- !! ! '5 "( 26( "! ! 05!#' "41 M[As s(s − 1)rs−2 − 2ksAs rs−1 + σ As rs−1 ] = 0s=0" " "5* [As+1 s(s + 1) − 2ksAs + σ As ]rs−1 = 0.s!D # 26( f0 (r) !# " -!541& !"- 5* 2.26! ( KK ! '-& K 9 0' " - " σ "5!# * -& ! ; ( I 11r → ∞ 0! - !M Ψ(r) ∼ e−kr e2kr = ekr < "#.9 KI ! ∞∞s=0s=0∞(2k)s< ! ! ;( KK ! 6%! ; F ∼ e 5 "5 !0 !# "# .- !! r → ∞ "!(! !0( J("(.5 "& 26 ? -! ! 0 "!#KBKs = 1, 2, .
. .! As ∼As ,+krF (r) = e−kr f (r).As ,% "- '"# "-& 50 '-( - " σ 2.26!5 As 0"#;* '-(* s 1 s σ/k) "!.(4! !;4; ! ! F ∼ e−kr .AIOK s=0<"- ! " ! ! 5"(!# ( "( "405*'-& r ?"!"# "5 0!!# ( "# 226!5 . !( r s−1 % - ! ! s = 0 * A0 = 0 ,"(1Ψn (r) = e−kn r Qn (r),rQn (r) = A1 r + A2 r2 + . . . + An rn . B% - ! ! "( !(( n = 1 Ψ1 (r) = A1 e−k1 r ,k1 =mZe22=Za. A,- 9- M ( : "+& 9-L- '((+ (:( / 5)( ( !! A1 "!# "#'; # " .M 0 !# # "5 '"#!!5 '"(41 !# !"# - ! "- ! ! 3 5 & !-.!#4 !" ! * ! !"( !#"-;& !& "# ! !AKB2∞|Ψ| dV =A21 e−2k1 r 4π r2 dr= 1,"A1 =k13π0=Z3π a3. I?* & KO I ,"( ! Z = 1)" !6 & -! ( ! E1 = −13,6 эВ n = 1 ! E∞ = 0 n → ∞" - ';( 0" !# ( "! "(! ( " U (rn, max ) = E C " "! ! 4 !-414n.
!- 4 KO !r rn, max =e2|En |=22n2me2 Z= 2an2Z, Kn = 1, 2, . . ./041( !5 & I '5! !! !!6"#& & −Ze2 r ;(! ( 0" !# ""'6 ".! " ! ' * " !6 ';5* & % -! " "! 01!#4 ΔE =U0E4E3E2rm(Ze2 )222 ! .'5! ( 05 &! 0 .- !# =! ( '5! (& !6" '6 I! ,"( ! Z = 1)I=me422= 13,6 %.< E > E∞ = 0 ( "!. 0"#; !! ( !.5 '-( 0'4! 55&! " ! 3 ! !(!"! !5& !! ( 0.2 $ 1 D 5 %" ! !(41 6!=1 ) + "! 3 0( " " ( ,+? , 1 ) T - +D " @&"(9 0' 5 "-"",? = 4 ,?8) 1-) " -!& '"#!! !5& .! 05!# ! 5! -;# !# .-5 (!( !& * ! '! 11 -! ."-;# - ! % '50 "5-!M "#'( . '(!# "# ! - !65e !( *!'! (Ψ.26& 41& ";# (! ! 0"4& !.6 9 '" # -! !( !* (* E1AKA*" ! B>@?C& .
! ( "! ! Z = 1) !! ( 2."En = −me4 122 n2,n = 1, 2, 3, . . . 7 !# -! "-5 ! ;( "5M05" "4- ' !( ' !# Ψ.26 ! " θ ϕ?"!"# 5 2"& A !# "! "5 ! "- ! ( ! '!# 141 ( "! F-! ! ! ("4 * & !& "!"#& !!5-! 0! 0 '9 -! "( 141 ( "! 1 !! & 0 !&.-5* !(& '-! "& ! ( !# ."#'; # !; " !& 0"( ". !(4 "! 0"! ( ( " !# ! #;! ( 7 ! " !;4 ." !& ' !! '0 '-(* "# ! Δp !!!- ( ( ="! !(! ( ( ! -! !#;! ( !6"#( ( 7 ! ("(! ( "(412! ";# !* !! "; "# ' !!# .!- ( ( !- ( ( '! ' !!"#&; 0" ( !! ( !- 559 '! & # " ! .!6"#( ( "( ?!; " !& !0' - ! ( (! -! "! ! !# ( " 1! ( "% '5 " ! 0"-# !4 !!- 4 2% " "- 6 !(( ! 1#4 !;( " !& 2Δp Δx ∼ . D; 5 "( "& !ME=p22m−e2r.
,- 9- M ( : "+& AKI9-L- '((+ (:( / 5)( ( D ' #p → Δp 0 -!!# & " ! !5 "- r 9"( Δp ∼ /r "-2E∼2mr 2−e2r≡ Φ(r). N)"# '-( ! "- !! dΦdr2−"= 0,mr 3+e2r2/! 4 * 6 !(( "! ! (Mr=2me2 O.=! ! 0 !-41 ';& 0! "!. < ! O N ! 6 !((! MEmin = −me422,414 0 & & εБ ? - " 22.6! (' 50 !;( " !& 2 ' !-41& !! "5* 26& "! " !6" " !# 0" !1!"# ! ! "(! ! *( "! ! 05" !" 5;Ψ.26( "! ! !"(! ( 1Ψn (r) = e−kn r Qn (r), Qn (r) =rnAs rs , As+1 =s=1σ=2me222mE= , kn = − 2 n =2a1an2kn s − σs(s + 1)As ;B.G ! -" !( ! ! ! n = 1C ( 26( '5" # 5; !#Ψ1 (r) =√1π a3e−k1 r ,1k1 = .a*! ( -" ! 7 "#'( "!# 5 ! (! *! ( "! !( !4 ' !# !"#2";# "& 26 7 !!# "- |Ψ1 (r)| dV 3(! !# ! -! "! *! ( 0J dV % " ! 2- & ! '- 0 &! 2-.
! %'# 2- & "& r !"15 dr C 0J dV = 4π r 2 dr 9 (! !# *( "! ! " " A !"(!dW1 = w1 (r)dr == 0.A/- -! Ψ1 (r) ! r = 0 ! ( ! =!! -! !" # ! ! 5 !5& "" 05 " - ( *. < " "! " !# ( 5 ! " -. ! '( M "( "! *! ! ! ! " "& 26 !AKK1π a3e−2r/a 4π r2 drI A '5! -! 5 ! !( n = 1) 9 ! 05! 05 ! - "40( !( 26( !!"! !# (! ! w1 (r) = dW1 /dr .! ! r <." ! "(! ( ' "( dw1 /dr = 0 ! (5rmax = a =2me2K .7 ! !( ! ( (! !# 0!# "! "#. =! "- !# & 0 & 0!5 C " 05 5 .!" 05& ! Z > 1 ! "-" 05rmax =2mZe2K 0.D # "#'! ( !( 0 ( !"( 7 " 5" ;" ! 0 * !"& %.5* "! 01! ( ( ! 5 " -! ! ! "# ! !"# ( 7 5 ' " !(( !5* "! 1! ( ;" !5 %.!5* ! ! 0! !# .! ! " (! ! 5& '"( 05 41 " 9 0 & 3 ! -#"'5& ! "# "(! ( "-5 .!( ! ( ! "#& (! !#4 !.!!# "! 7 !((* '! 5;41* ! "- ".! &! !- ' ! !! !41( (! !# 6"# ! ! r K ◦ " '- "-5 a = 0,529 U = 0, 529 · 10−8 *.; ! ! -! 4! '!- 5!5 D! -! !0 !(!"# ! 3 ! ! ! 3( (! - !"# !( 6 "5 !( !5 !!5 * ! " 2'/0! ( !# '05 !(( ,"( "41 ' .5 !(( ! - " n = 2 !& ( B "(,- 9- M ( : "+& AK9-L- '((+ (:( / 5)( ( Ψ.26 05! ( ! -"MΨ2 (r) = (A1 + A2 r)e−k2 r .
% !! ! !5 !; B '5! ( A2 == −k2 a1 - k2 = 1/2a 9rrΨ2 (r) = A1 1 −exp −.2a2aE!( 226! A1 !"(! "( ! !! -!w1 (r)w2 (r)0,30,60,20,40,10,20,0r/ar/a1232464a810 12 14á2 $ 2 04 ) ,- 1 @A 1 +=,41 @"A ∞2 "(! ( ' "( |Ψ2 | dV =|Ψ2 |2 4π r2 dr = 10 A1 =1.√8π a3?5 ! 5 2" ("(! ( "- "( Ψ.26 '- r = 1/k2 = 2a ! & 0 %(! !# &! "! !" dr " !( r! ( !# r 2rdW2 (r) = w2 (r)dr = a21 1 −exp − 4π r2 dr.2aa>2 "! ! (! ! w2 (r) K 86(w2 (r) ! -!5 !M /AK "- n = 1 *! ( 6! ! r = 0 %!& "'! ( r = 2a " && 0.& Ψ.26( '0 !(( 01! ( "# ) "#5 '-( "! ! (! ! !4! ( √√r1 = (3 − 5)a, r2 = (3 + 5)a.9 0' " (! !& (" ( '" r > 0! !- "! &! "#'( !6 ! 05!# " * 0" !(*M0 < r < 2a r > 2a.N ' K 0" (! &! !& 0" ! ! !( 5;41 Ia % ! !! !! !- & 5 "(!( 0" 5 & ; "- 3 !& 0 & 0!5 9 "! '0 !( ! -&(! !#4 *!# ( 0" '& 0! 0 < r < 2a! "( 26( !(( Ψ1 (r) ! '" 0" ! 0 < r < ∞ % "- '0 !(( 26 Ψ2 (r) ("(! ( '" < "#&; ! !.
- " n "( 26( Ψn (r) 5& ' "!"# !"4 "4 " '" 26 n. !(( n − 1M '" n = 2 '" n = 3 ! ?' !! 6""(6& !5 !( " # " < "( 4 "4 264 !((!5 - " n = 3M12r2r 2rΨ3 (r) = √+O1−exp−,3327π a3a27a3a " !& !! "5 !(/- -! 0" 5 ( !! !4! 1 0." "5 ! !5 "( (! ! 0!#"!9 0 !(!"# ! -! ! !( ; ."& K K ( "-5 ! ! !(. ! !! 0"4! ( -! 4 ". !# (!( 0!5 C " !# "( '!"# 0'! *! ( '!# -! !" 0 "! 0" " "5 0' "& !!26& 5 ! "!&0"- 0" !- ! !# "G'!5 &- 0( - ! ! 05!# 5 "' 0" !("5* ! " ! !# ( * ! ".! E!( !5 !& ;& !;4 ".! "! ! !# "; 0"# ( "#'!# ( .! C " "! 2.6( "( ! & ' K 3 K ! ! ! -!!# -! 5& "! *! (,- 9- M ( : "+& 9-3- Q(!+ *)( &$+# :)(# 05- 0" ( - !& <! !# -! 5&' * !;4 ! ("(! ( ! && - ! 9 !" '5! ( "'5 6- ! / ! ( ! "- !(" ! 0"#; - " '5*"! ? !* "! !# ! %"5 26!* !* "! !5 -" ! ! ( "# !5 <" ;* "! ! & !!! !"# "0 ,"( - !5* 6 -!!# -! 5&' !* "! *! ( !"# " ( 9 "( !*"! !("5* ! "5 6-5 ! 2"5!5 05" "-5 "( ! " !"# ' ! *' e2 → Ze2 ?1 !5 *! ! "! ("(4! ( ( !(( !( ! ( % !! ! KO A"( "0 " "! (n = 1) !!& ?!5 !* 0J! !(! ' ( !5* !"#.5* "& !& - '54! ( "&-!5+&-!5& ! ' ! 05!# '0 '"-5 0.
/ ("(! ( "!- '( -' ' 00! ' "! !* 05* ! -! "#'" # 5!* 8 >6 ' 1 ! .*(1& "5 "5 ! G " "& "&-!5* !* !"(! 0& 0 .(- "( %!"# '- !* ! ! ." !"4 "5* ' !&%5 ( !( ' !# " "& ! 05" 0 @"# 1 ANN. / ;"-! ! !# ( "& - !!5 !5* "54! ( 014 2"11ν = R̃ 2 − 2 , m = 3, 4, 5, . . .AAKE1 = −m(Ze2 )2222= −εБ Z ,r1 =2mZe2=aZ.B? ' ! '( ( "! ( ! ".! "# "# 41 ( 6! !! 6."# ! '( ( ∼ Z 2 ) ? ! "! ('5! '55 *! !- ! "- ( !!5* ' !! * ! "! "! 6"#.
Z 7 0 ! -# &! '*$ 2. #47 7.!& '"#!! ! 55& 2"& "( & "! ! '"(! !# "- ! !< ( -! " 1 !!# 0 !6" .'6 !! !41* * "! ' !5* ('5* !(& n = 1, 2, 3 ! ! 05* !(& % "-! *(1 ( !( ! n = 1 ."#( ( 0*( "( ! ('. 0 *5& !6" '6 !"(! AK % /5!5 8 >6!-!" '" "- ( 55* !5* !6"'6 , '( !& * ! '" # !"#57 " !! 0J( !- * ! !"# -.! "- ! ' ! '"- '"5* ! *(1* ( !.5* -* '5* !5* ! ""(5* '* .* !"" ! !"# '* "(* !"-! ( 0"#;&2AKm% ! ! - !!5 ν - ! !4! "- N =1= = =! - " '5! "# " & "5 "5! (νcλ 6 "5 !! 9& 0 '( '-(- !! !"#5* "& 3 0!5* !!* −1 ) 3 !.- 0 "" 0 !( !!- & !* '(!"#5* ! "& " "&& % !* 6*"( @"#11N = R 2 − 2 , m = 3, 4, 5, .
. .I2m= !"# & '- 226! R !"(!, = 109677,6 −1 .R = R/cK%"- R '54! 0F !" -! IO "& ! '!"#& !-. !#4 "54! ( 2" @"# I " ' !(& G0 & !5 '5! & !- ! !.! ! ( & !5 ""4 !! "# -2" @"# ?"!"# ! ! - 0( .- ( 2" 5 &.! !& ' !?( @"# "! & 0"'& "#!2"!& 0" !(*! 8!2( ! !& "& 5"(! ! ' ?( ""( ' * 3 '!(◦"( Hα 3 ! " "5 6562,8 U "! & 0" !! C - !5& ( 5& 5& 6! " ( "" && ; !( "& : 5* "' !",- 9- M ( : "+& 9-3- Q(!+ *)( &$+# :)(# (!( >6 "! "#!2"!& 0" ! !! !41 '"-( " 05!# ' ! & !*& ! ' "!m e411ωmn = Em − En = e 2−,22AKN◦λ = 3647 U>"0& 5 " "#5* 2" !" 1 0" 5"5 05" !5!5 ( +& "( "#!2"!( 0" !#M11N = R 2 − 2 , m = 2, 3, 4, . .