karlov-kirichenko-kvantovaya-mekhanika-2016 (810755), страница 30
Текст из файла (страница 30)
! 05" ; "( "-( 2- . !-5* !(&% " !- 05" &5 -! 0!"# .! "! / " "- 5 "#'" * .5& '" - 0" 7 ! ( ; !."& '- ( c % "5* -!* !"- ! -! 05" "#' " D; c "( "! ! M! - " ' (! 0 !5 '-( ! L̂2 "!"#. 0 !5 '-( "#! ! ! '5* '-& "! (! ! ! 5 !- ! ! ! - "M ' '- l '-.( 5 * !5* '-(* m? -! ' c "( "#& - ! ".& 26 R(r) ! KBAĤψ = Eψ,p̂22m−e2rI.,"( * "-4 ! "! '( ( Ze !!- * "#&;* 2"* '!# e2 → Ze2 ?" ' " ! !- & !!# p̂22m=p̂2rL̂22mr 2=−22mr2m2Δ θ, ϕ = −2p̂2r2m+L̂22mr 2K,= −2 Δ r ,1 ∂sin θ22mrsin θ ∂θ∂∂θ+1∂2sin2 θ ∂ϕ2.
2m2 l(l + 1)Δ r R(r) +2mr 2NR(r) + U (r) = ER(r).( -! "#( - !# "" Δr R =ψ(r, θ, ϕ) = R(r)Y (θ, ϕ),d2 Rdr 2+d2 Rdr 2+2 dRr dr θ ϕ 3 "5 5 2- & !5 ! G !.( !(( "5 '- " ! ( -! ! L̂ & !! !"# "5 5 5 "5"!#L̂2 ψ = l(l + 1)ψ,L̂2 Y (θ, ϕ) = l(l + 1)Y (θ, ϕ).b5& 26& Y (θ, ϕ) "( &- !"(! ! % ! -! ! 26 ( ' (! ! ! ! - " m"(41 64 " ! 5"4 # / !r dr+2m2rρ= , ε=aE+e2r−2 l(l + 1)2mr 2R = 0.OEE1; a=2me2, E1 =me422.AB ! ( -! ( "! ! !6!"# .
0'-ε = −η 2 .AA% 0'-(* AB AA O ! dρ22 dR,"( 0 ! "#&;* 5- "& 0' ! @. '(!# "5 6* 0 a 3 .6* A.& 0 & 0!5 5 " 0''55d2 R@ !# ; ( A "25 * 05 226"# 4M "#! ! ( 5Ĥ =−KA+2 dRρ dρ+ −η 2 +2ρ−l(l + 1)ρ2R = 0.AI76 264AKu(ρ) = ρ R(ρ).% '"#!! 5 * "41 4Md2 udρ2+ −η 2 +2ρ−l(l + 1)ρ2u = 0.A < ! !!# !! ;( ! .( ρ → ∞ ,"( ! !!- !0 !# ! !!# "5 !5* 0* ;!# "-; ( ! 226"#Q(Q(u − η 2 u = 0;< "# "( - !# ! ! " 01!# ( "# !.! ! * ρ (!# "4 226!5 *!(* ρMKI ! (MAu|ρ→∞ ∼ e−η ρ .ak+1 (k + σ + 1)(k + σ) − 2η ak (k + σ) + 2ak − l(l + 1)ak+1 = 0.%! ; ( !0; "# 6"# !! ρ → ∞," 264 wρ !;u(ρ) = e−η ρ w(ρ).A< !"(( A A "- "( wρMd2 wdw2l(l + 1)w = 0.− 2η+−dρ2dρw(ρ) = ρσANkak ρ .ρ∞ak (k + σ)(k + σ − 1)ρk−2− 2ηk=0∞ak (k + σ)ρk−1 +k=0+∞ak 2ρk−1− l(l + 1)ρk−24!= 0. AOk=0< k = 0 25* 0* ! ( " 6"# 1 ρ2 226! " 05!# "4Ma0 [σ(σ − 1) − l(l + 1)] = 0.IBG; ! ( '"(! &! "- σ Mσ = l + 1.ρσk=0kak .(2η)kk! F-! -! 226!5ak 0"#;* k 4! 5& ' ! '" .∞xk!5 ( )" ! ex = 9 !- !#4 (41* ( ! ' 0"#;* '-(* ρ! ( w ∼ exp (+2ηρ) =! '-! -! 26( uρ 6"#.
' !!M u(ρ) = e−η ρ w(ρ) ∼ eη ρ 9 ! "# "( 26( " 05!# -& ?"!"#( AN 05! ( ! 1 !! ! "# '-k = nr "( ! ! ( anr +1 = 0 % "41 226.!5 ak , k > nr + 1, " IK ! 014! ( "# < ! '2"5 IK "!η (nr + σ) − 1 = 0,< " ! IA[ak (k + σ + 1)(k + σ)−2η ak (k + σ) + 2ak − l(l + 1)ak+1 ] ρk−1 = 0.II" η =1nr + l + 1.I -! 0'-& AB AA ! 05!# .E=−%! ; σ = −l ! - ρ → 0 ; w ∼∼ ρ−l , R ∼ ρ−(l+1) " 05!# !0; ,"( *( 22.6! ak !"#5 -"5 (M∞2ηk=0 k!< ! ! ( A !ak+1 ≈6!5 ( AN ! 0( ak ∼k=0σ(k + σ + 1)(k + σ) − l(l + 1)C " ( AN 05! ( ! 226!5 ak !"-5! "( ! k → ∞ < " !; '-! -! 0"#;* '-(* k 22.@ !# ; ! ( (∞=! ! ! !;4 ('541 226.!5 ak M2[η (k + σ) − 1]ak+1 =ak .IKAρ2ρKKE1(nr + l + 1)2=−me4 122 n2.ID # 0'- "( " ! - "n = nr + l + 1.IG"# ! - " nr '5! - " !"-5* ! "( -".
( AN ! - " '" "& "#& - ! "&26 < 5 " "- nr 0! 6"- "5& ('-&nr = 0, 1, 2, . . .IQ(Q(< "# nr 0, l 0 ! " I " ! - " !!# ! !"# 6"5 "!"#5 '-(MD # -! -! ω = E2 −E1 3 ( ! '"-( "1" * 9 ' A "!KINn = 1, 2, 3, . . .D! -! 5 "( "#& - ! "& 26! Rnl (ρ) =e−η ρρwnl (ρ), wnl (ρ) = ρl+1n−l−1ak ρk .IOk=0b5& !& 26 ' ! ! '-& " ! - " n ! l ,"( !(( ! !-41 ."# '-4 " ! - " ! l = 0 nr = 0n = 1) ' IO "!R10 (ρ) = a0 e−η ρ .KB/0! !! !"#5& 2! -! "!"#( !.( ! ( !- ; (c " - ! ! 0 '-& I -! "!( 0 ( !( ! '" - .0"D - AN <"-!# " <" *( ' !"( !5* 55* ** *& !G ; < !# ! ! ( N2 ! *(1* ( .!( & E2 N1 ! !( & E1 E2 > E1 % !( ( - " * ( " E2 → E1 - " * 0! " E1 → E2 " .!5* * E2 → E1 6 A21 N2 - " 5.5* * ! " 3 B21 ρω N2 0!" 3 B12 ρω N1 D # ρω 3 !"#( "! !# '"-( ? -! ! " ( ' 5! ( A21 N2 + B21 ρω N2 = B12 ρω N1 .AG " ! ( "(! ( ".
@"#6MNi = AKi exp−EikБ T,1kБ TA21 N2B12 N1 − B21 N2=B121expA21ω2kБ T.− B21 < 5 * !!* kБ T ω '"- 0! !# . 2! "! !# '"-( ρω " <! (! !65* * B21 ρω B12 ρω ) 0! 0"#; (!. ! !5* * A21 ) < "# 226!5 =&;!& ' (! ! !!5 5 * !!*N2N1B21 ρω N2 = B12 ρω N1 ,ω→= 2 exp −2kБ T1.1' !* !;& 5!! ('# 226! =&;!&MK2 B21 = K1 B12 .=! '"(! !# 2" ρω =1A21B21 exp (ω/kБ T ) − 1.< 5 * !!* ! 4 "!ρω =A21 kБ TB21 ωN.? & !5 !* !!* ! ! "G"( : , Mρω =ω2π 2 c3OkБ T.? 5& N O "( ρω '5! -!I Ki 3 ! !# 5( i. ( A 3 -( !(.( <! ' A "!N2ω2.= exp −KN1ρω =KA21B21=ω2π 2 c3ω.AB< ! ! 5( ! 2" <"Mρω =ω 31π 2 c3 exp (ω/kБ T ) − 1.AAQ(Q(/0! ! -! !; (! !& 6.
! ( !! ! % ' (! ! '"-5* !& ! 4! ( ") ""MKWвынWспон=ρω B21A21= n̄ω .AID # n̄ω 3 - " '"( " <"Mn̄ω =exp1ωkБ T.−1AKF! 1 ( 2" AI " ! ! % . " - 0"#; n̄ω ! 0"#; 2! ! 0" .(!5 55 *5 4 * !5. ?!; AI '5! ! -! 1 !! !6& . ! !4! !"# !5 " !"# 55 *5M0 ! 6 1 !4! *!( '"-&(! !#4G !5& 5 2"5 <" " =&;!& AOA =!! * " ! " '4 !& ".!D - AO <"-!# !"# " '"-( '. 0" - !6 ** ( E2 E1 !."41 ( 0"( 22! ," ' "" ." - !6 !(G ; , ! -" -! ! !( ; " .0 " % ! "- " 05 !5 5!5" !- ! '" 05 *!- '"- - !!&E2 − E1 = ω0 .A<! * !"# " 05" 05 !.!# G(0) (ω) = δ(ω − ω0 ).IC " '"-41& ! ! ( !#4 ! " ! 22!," 0! 0"4!# - !! '"-( 4ω0 = ω0 + kv,K "& ! ! " k = ω0 /c '- D # -! -!*!5 ! ! υ cnf (v)d3 υ = nmK3/22πkБ Texpmv2d 3 υ.−2kБ T D # n 3 - " ! 6 0J ' 26( f (v) "!.(! "4 Mf (v)d 3 υ = 1, ! ! & ' ! ! υx υy υz )'! ( "* ! −∞ +∞ " ! 2.2! '".-( 0"( ! ! ( 5GД (ω) = δ(ω − ω0 − kv)f (v)d3 υ.,"( 5- "( ! !" 50 # x " ! 9 δ .26( ! 5* υy υz !" !5 " 5- "(! ( % '"#!! "-GД (ω) =m1/2 ∞2πkБ Tmυx2dυx .δ(ω − ω0 − kυx ) exp −2kБ T−∞=!! !" 5- "(! ( *( ' & ! δ .26 -! !GД (ω) =1√ΔωД πexp −(ω − ω0 )2(ΔωД )2.N%;;( ! 2" "-ΔωД = kυT = ω0υTcO! 5 " *!& ;5 ! 5! " ;.
! (' !"5 ! ' D # 0'-υT =2kБ TmABQ(Q("( 0" (!& ! "" !-41& 2.6 "( ! 0 "4!& "- !C " " AI 5"(! ( ! ! 5 ! ( N ,& !.!"# 5!"# 5 ! ! " (4.1& ( !"#exp −mυx2 2kБ T ,A! & !"#KN2Φ(υ) = 4πυ f (υ) = 4π3/2m2πkБ T2υ exp −mυ 22kБ T.(ω − ω0 − kυx )2 + (Δω0 /2)2%5 N 5! ! '54 2 !"#.& " ;& O F " 5"M∞∞1√ΔωД πGД (ω)dω =−∞−∞exp −(ω − ω0)2(ΔωД )2dω = 1.AA> 2 "- " -! ! !( ;" 0 "MΔωес ΔωД .AIC " ! ! 5"(! ( ! 2 " ! .!-5& "6 & & b5& 2.2! "(! "-( ! 05!# !" " - !# -! *& ("(! ("6 ( 2G0 (ω) =Δω012π (ω − ω0 )2 + (Δω0 /2)2AK, !& Δω0 3 ! !( ; ,"( -! 22! ," 5"5 .5* '!# - !! ω0 ω0 !! ! K -!! 2.2!G̃0 (ω) =1Δω02π (ω − ω0 − kv)2 + (Δω0 /2)2A . .!5* ' ! !( !MGД (ω) = G̃0 (ω)f (v)d3 υ.A%50( # x "# " ! 5"(( ! ! ! υy υz "-G(ω) =m2πkБ T1/2Δω02π∞−∞exp −mυx2 2kБ T(ω − ω0 − kυx )2 + (Δω0 /2)2dυx .AKO!−1,AN! (! ( 05 ! <! 5 ( '.
' !" .!"# A '- υx = (ω − ω0 )/k 5- "(( !;& (!"∞dυx2π=,AO−∞(ω − ω0 − kυx )2 + (Δω0 /2)2Δω0 k* & 2 " N% 0! "- Δωес ΔωД 5 "- "6 & !M!"# AN (! ( " ! 05!# 5 '. '!" '- υx = 0 / !41& ( !" 5- "(! ( !M∞−∞2πkБ T 1/2exp −mυx2 2kБ T dυx =,mIB 5 "- ! AK% !-5* "-(* Δωес ∼ ΔωД *(1& A !" 5! ( "!5* 26(* ! "-! &! - " '-Учебное изданиеКАРЛОВ Николай ВасильевичКИРИЧЕНКО Николай АлександровичНАЧАЛЬНЫЕ ГЛАВЫ КВАНТОВОЙ МЕХАНИКИРедактор О.А.
КонстантиноваОригинал-макет: В.И. ШутовПодписано в печать 28.09.2004. Формат 60 90/16. Бумага офсетная.Печать офсетная. Усл. печ. л. 22,5. Уч.-изд. л. 29,25. Тираж 1500 экз.Заказ №Издательская фирма «Физико-математическая литература»МАИК «Наука/Интерпериодика»117342, г. Москва, ул. Бутлерова, д. 17 БE-mail: porsova@fml.ru, sale@fml.ruСайт: http://www.fml.ruИнтернет-магазин: http://www.fmllib.ruОтпечатано с электронных носителей издательствав ОАО «Московская типография № 6»115088, г. Москва, Ж-88, ул. Южнопортовая, 24ISBN 978-5-9221-0538-59+HifJC-LKPNSP+.