shporiexam (803473)

Файл №803473 shporiexam (Шпоры к экзамену)shporiexam (803473)2020-05-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

1. Определение реакций подшипников твердого тела, вращающегося вокруг неподвижной оси.

В соответствии с принципом Даламбера:

Статистическими реакциями называет части полных реакций, которые статистически уравновешивают внешние силы. Уравнения для них получим из системы (*), положив в нее ε=0 и ω=0:

Части полных реакций, которые уравновешивают силы инерции называют динамическими реакциями. Уравнения для них мы получим из первых пяти уравнений системы (*), если учтем, что приложенные внешние силы уравновешены статическими реакциями:

2. Понятие статической и динамической уравновешенности твердого тела, вращающегося вокруг неподвижной оси.

Тело, имеющее неподвижную ось вращения, называют статически уравновешенным, если ц.м. этого тела находится на оси вращения.

Динамические реакции для статически уравновешенного тела образуют пару сил. Пара сил может уравновешиваться только парой сил. Следовательно, силы инерции точек тела, уравновешивающие динамические реакции, в этом случае тоже приводят к одной паре сил. Используя ур-я (**), из двух последних уравнений системы (*) получим:

Динамической уравновешенностью называется случай обращения в нуль динамических реакций. Динамические реакции обратятся в нуль, как следует из (***), если равны нулю центробежные моменты инерции Ixz и Iyz, т.е. дополнительно к статической уравновешенности ось вращения Oz должна быть главной осью инерции для любой точки O на этой оси. Т.к. центр масс в этом случае расположен на этой оси , то ось вращения при динамической уравновешенности является главной центральной осью инерции. Главный вектор и момент сил инерции Lx(Ф) и Ly(Ф) равны 0. Момент сил инерции Lz(Ф) не обязательно равен нулю. Главную центральную ось вращения называют свободной осью вращения – свободной от динамических реакций опор.

3. Основные положения теории удара.

Ударом называют явление, при котором за малый промежуток времени (почти мгновенно) скорости части или всех точек системы изменяются на конечные величины по сравнению с их значениями непосредственно перед ударом или после него.

И зменение скоростей точек при ударе на конечные величины связано с большими ударными ускорениями этих точек, возникновение которых требует больших ударных сил. Ударным импульсом называют векторную величину . На рисунке ударный импульс – заштрихованная область.

Средняя ударная сила – постоянная в течении удара сила, которая за время удара дает такой же импульс, как и переменная ударная сила. Ср. уд. Сила определяется из соотношения: . Ср. уд. сила имеет величину порядка 1/τ. Импульс неударной силы за время удара имеет порядок величины τ, т.е. является величиной малой по сравнению с ударными силами. Поэтому импульсами неударных сил можно пренебрегать по сравнению с ударными импульсами.

Вследствие малости деформации по сравнению с перемещением точек тел за конечный промежуток времени, перемещения точек тела за время удара являются величинами малыми. Поэтому перемещениями точек за время удара можно пренебречь. Т.е. за время удара точки системы не успевают изменить свое положение => радиус-векторы и координаты не меняются.

4. Теорема об изменении количества движения точки и системы точек при ударе.

До удара точка M массой m двигалась по AM со ск-тью v. Под действием ударной силы F и неударной F* точка изменила свою ск-ть на u. По теореме изменения движения для точки в интегральной форме имеем:

Т.е. изменение количества движения точки за время удара равно ударному импульсу, приложенному к точке – теорема об изменении количества движения точки при ударе.

это есть теорема об изменении количества движения системы при ударе: изменение количества движения системы за время удара равно векторной сумме внешних ударных импульсов, приложенных к точкам системы. Теорема о движении центра масс системы:

Частные случаи:

5. Теорема об изменении кинетического момента точки и механической системы при ударе.

По теореме об изменении количества движения для точки имеем:

Это соотношение выражает теорему об изменении кинетического момента для точки при ударе.

Т.о., изменение кинетического момента системы относительно точки за время удар равно векторной сумме моментов относительно той же точки внешних ударных импульсов, приложенных к точкам системы.

Частные случаи:

6. Изменение угловой скорости при ударе по вращающемуся твердому телу.

Если удар испытывает твердое тело, вращающееся вокруг неподвижной оси Oz, и ω0 и ω – угловые скорости до и после удара, то:

В это уравнение не входят моменты ударных импульсов реакций закрепленных точек оси вращения, т.к. они пересекают ось вращения, если не возникают ударные импульсы сил трения в местах закрепления оси.

7. Центр удара. Условия отсутствия ударных реакций в опорах вращающегося тела.

Пусть тело закреплено в точка A и B и вращается вокруг неподвижной оси Oz с угловой скоростью до удара ω0. Освободив тело от связей и заменив их импульсами реакций SA и SB, применим к явлению удара теоремы об изменении количества движения и кинетического момента:

О пределим условия, при которых удар по телу не вызывает ударных реакций в подшипниках, т.е. SA=SB=0. Из (****):

Из (5) следует: т.к. Sz=0, то ударный импульс S находится в плоскости, параллельной Oxy. Выберем оси координат как показано на рисунке (S||Ox). При таком выборе СК Sy=0, Sx=S, Mx(S)=0, My(S)=0. Учитывая это из (5) получаем: xC=0, Ixz=0, Iyz=0, т.е. ц.м. находится в пл-ти Oyz и ось вращения Oz является главной осью инерции для точки O. Пусть OK=l, тогда:

Точка пересечения K линии действия ударного импульса с плоскостью, проходящей через ось вращения и центр масс при отсутствии ударных реакций в подшипниках, называется центром удара.

8 . Теорема Карно.

Установим изменение кинетической энергии в случае абсолютно неупругого удара при мгновенном наложении связей для точки и системы в отсутствии ударного трения. По т. Об изм. кол-ва движ-я имеем:

При отсутствии ударного трения ударный импульс направлен по нормали к поверхности. Ск-ть точки после такого удара направлена по касательной к пов-ти (un=0). В данном случае S и u взаимно перпендикулярны, поэтому . Учитывая это умножим обе части (*) скалярно на u:

При абсолютно неупругом ударе кин. эн-я точки уменьшится на

Получена т. Карно для точки. Векторную вел-ну v-u называют потерянной ск-тью. Теорема Карно для точки: потеря кинетической энергии точки при абсолютно неупругом ударе и отсутствии ударного трения в случае мгновенного наложения связей равна кинетической энергии от потерянной скорости.

Теорема Карно для системы: потеря кинетической энергии при абсолютно неупругом ударе в случае мгновенного наложения связей и отсутствия ударного трения равна кинетической энергии от потерянных скоростей точек системы.

9. Движение точки переменной массы. Дифуры движения.

В случае точки переменной массы кроме приложенной к точке силы F действуют силы, вызванные отделением от точки частицы массой d’M. Общее изменение скорости dv в течении времени dt равно сумме dv1 (от силы F без учета изменения массв) и dv2 (изменение массы без учета действия силы F).

Получили дифференциальное уравнение Мещерского.

Если с точкой переменной массы связать подвижную СК, поступательно движущуюся отн. СК Oxyz, то

Из этого следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, только кроме приложенных к точке сил действует дополнительно реактивная сила, обусловленная изменением массы точки.

10. 1-я и 2-я задачи К.Э. Циолковского.

1ая задача:

С читаем, что точка (ракета) движется в свободном пространстве под действием только реактивной силы.

Т.о. скорость в конце горения не зависит от закона горения, т.е. закона изменения массы.

2ая задача:

Если точка переменной массы движется вертикально вверх вблизи пов-ти Земли, то считая поле Земли однородным (g=const) и пренебрегая сопротивл. воздуха, а также учитывая все предположения 1ой задачи, получаем дифур движения точки:

11. Устойчивость положения равновесия механической системы.

Е сли существует такое достаточно малое начальное отклонение стержня от положения равновесия, при котором силы стремятся вернуть стержень в положение равновесия, то такое положение равновесия считается устойчивым; Если силы отклоняют стержень еще сильнее – неустойчивое; если стержень после отклонения остается в равновесном положение – безразличное;

По Ляпунову: равновесие системы называется устойчивым, если для любого достаточно малого ε>0 можно выбрать два других таких малых числа η1>0 и η2>0, что при удовлетворении начальными значениями обобщенных координат и скоростей неравенств |q0i|<η1, |q˙0i|<η2 в любой момент времени все обобщенные координаты подчиняются условиям |qi(t)|<ε.

Характеристики

Тип файла
Документ
Размер
919 Kb
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее