D. Harvey - Modern Analytical Chemistry (794078)
Текст из файла
1400-Fm 9/9/99 7:37 AM Page iChemistryModern Analytical ChemistryDavid HarveyDePauw UniversityBostonBurr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. LouisBangkok Bogotá Caracas Lisbon London MadridMexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto1400-Fm 9/9/99 7:37 AM Page iiMcGraw-Hill Higher EducationA Division of The McGraw-Hill CompaniesMODERN ANALYTICAL CHEMISTRYCopyright © 2000 by The McGraw-Hill Companies, Inc. All rights reserved. Printed inthe United States of America.
Except as permitted under the United States Copyright Act of1976, no part of this publication may be reproduced or distributed in any form or by anymeans, or stored in a data base or retrieval system, without the prior written permission of thepublisher.This book is printed on acid-free paper.1 2 3 4 5 6 7 8 9 0 KGP/KGP 0 9 8 7 6 5 4 3 2 1 0ISBN 0–07–237547–7Vice president and editorial director: Kevin T. KanePublisher: James M. SmithSponsoring editor: Kent A. PetersonEditorial assistant: Jennifer L. BensinkDevelopmental editor: Shirley R.
OberbroecklingSenior marketing manager: Martin J. LangeSenior project manager: Jayne KleinProduction supervisor: Laura FullerCoordinator of freelance design: Michelle D. WhitakerSenior photo research coordinator: Lori HancockSenior supplement coordinator: Audrey A. ReiterCompositor: Shepherd, Inc.Typeface: 10/12 MinionPrinter: Quebecor Printing Book Group/KingsportFreelance cover/interior designer: Elise LansdonCover image: © George Diebold/The Stock MarketPhoto research: Roberta Spieckerman AssociatesColorplates: Colorplates 1–6, 8, 10: © David Harvey/Marilyn E. Culler, photographer;Colorplate 7: Richard Megna/Fundamental Photographs; Colorplate 9: © Alfred Pasieka/SciencePhoto Library/Photo Researchers, Inc.; Colorplate 11: From H.
Black, Environ. Sci. Technol.,1996, 30, 124A. Photos courtesy D. Pesiri and W. Tumas, Los Alamos National Laboratory;Colorplate 12: Courtesy of Hewlett-Packard Company; Colorplate 13: © David Harvey.Library of Congress Cataloging-in-Publication DataHarvey, David, 1956–Modern analytical chemistry / David Harvey. — 1st ed.p. cm.Includes bibliographical references and index.ISBN 0–07–237547–71. Chemistry, Analytic.
I. Title.QD75.2.H3742000543—dc2199–15120CIPINTERNATIONAL EDITION ISBN 0–07–116953–9Copyright © 2000. Exclusive rights by The McGraw-Hill Companies, Inc. for manufactureand export. This book cannot be re-exported from the country to which it is consigned byMcGraw-Hill. The International Edition is not available in North America.www.mhhe.com1400-Fm 9/9/99 7:37 AM Page iiiContentsContentsPreface2C.52C.6Conservation of Electrons 23Using Conservation Principles inStoichiometry Problems 232D Basic Equipment and Instrumentation 252D.1 Instrumentation for Measuring Mass 252D.2 Equipment for Measuring Volume 262D.3 Equipment for Drying Samples 292E Preparing Solutions 302E.1 Preparing Stock Solutions 302E.2 Preparing Solutions by Dilution 312F The Laboratory Notebook 322G Key Terms 322H Summary 332I Problems 332J Suggested Readings 342K References 34xiiChapter 1Introduction1A1B1C1D1E1F1G1H1What is Analytical Chemistry? 2The Analytical Perspective 5Common Analytical Problems 8Key Terms 9Summary 9Problems 9Suggested Readings 10References 10Chapter 2Basic Tools of Analytical Chemistry 11Numbers in Analytical Chemistry 122A.1 Fundamental Units of Measure 122A.2 Significant Figures 132B Units for Expressing Concentration 152B.1 Molarity and Formality 152B.2 Normality 162B.3 Molality 182B.4 Weight, Volume, and Weight-to-VolumeRatios 182B.5 Converting Between Concentration Units2B.6 p-Functions 192C Stoichiometric Calculations 202C.1 Conservation of Mass 222C.2 Conservation of Charge 222C.3 Conservation of Protons 222C.4 Conservation of Electron Pairs 23Chapter 32AThe Language of Analytical Chemistry 35183A Analysis, Determination, and Measurement3B Techniques, Methods, Procedures, andProtocols 363C Classifying Analytical Techniques 373D Selecting an Analytical Method 383D.1 Accuracy 383D.2 Precision 393D.3 Sensitivity 393D.4 Selectivity 403D.5 Robustness and Ruggedness 423D.6 Scale of Operation 423D.7 Equipment, Time, and Cost 443D.8 Making the Final Choice 4436iii1400-Fm 9/9/99 7:37 AM Page ivivModern Analytical Chemistry3EDeveloping the Procedure 453E.1 Compensating for Interferences 453E.2 Calibration and Standardization 473E.3 Sampling 473E.4 Validation 473F Protocols 483G The Importance of Analytical Methodology3H Key Terms 503I Summary 503J Problems 513K Suggested Readings 523L References 5248Chapter 4Evaluating Analytical Data 534A4E.4 Errors in Significance Testing 84Statistical Methods for Normal Distributions–4F.1 Comparing X to µ 854F.2 Comparing s2 to σ2 874F.3 Comparing Two Sample Variances 884F.4 Comparing Two Sample Means 884F.5 Outliers 934G Detection Limits 954H Key Terms 964I Summary 964J Suggested Experiments 974K Problems 984L Suggested Readings 1024M References 1024FCharacterizing Measurements and Results 544A.1 Measures of Central Tendency 544A.2 Measures of Spread 554B Characterizing Experimental Errors 574B.1 Accuracy 574B.2 Precision 624B.3 Error and Uncertainty 644C Propagation of Uncertainty 644C.1 A Few Symbols 654C.2 Uncertainty When Adding or Subtracting 654C.3 Uncertainty When Multiplying orDividing 664C.4 Uncertainty for Mixed Operations 664C.5 Uncertainty for Other MathematicalFunctions 674C.6 Is Calculating Uncertainty Actually Useful? 684D The Distribution of Measurements andResults 704D.1 Populations and Samples 714D.2 Probability Distributions for Populations 714D.3 Confidence Intervals for Populations 754D.4 Probability Distributions for Samples 774D.5 Confidence Intervals for Samples 804D.6 A Cautionary Statement 814E Statistical Analysis of Data 824E.1 Significance Testing 824E.2 Constructing a Significance Test 834E.3 One-Tailed and Two-Tailed SignificanceTests 8485Chapter 5Calibrations, Standardizations,and Blank Corrections 1045A Calibrating Signals 1055B Standardizing Methods 1065B.1 Reagents Used as Standards 1065B.2 Single-Point versus Multiple-PointStandardizations 1085B.3 External Standards 1095B.4 Standard Additions 1105B.5 Internal Standards 1155C Linear Regression and Calibration Curves 1175C.1 Linear Regression of Straight-Line CalibrationCurves 1185C.2 Unweighted Linear Regression with Errorsin y 1195C.3 Weighted Linear Regression with Errorsin y 1245C.4 Weighted Linear Regression with Errorsin Both x and y 1275C.5 Curvilinear and MultivariateRegression 1275D Blank Corrections 1285E Key Terms 1305F Summary 1305G Suggested Experiments 1305H Problems 1315I Suggested Readings 1335J References 1341400-Fm 9/9/99 7:38 AM Page vContentsChapter 6Equilibrium Chemistry 1356AReversible Reactions and ChemicalEquilibria 1366B Thermodynamics and EquilibriumChemistry 1366C Manipulating Equilibrium Constants 1386D Equilibrium Constants for ChemicalReactions 1396D.1 Precipitation Reactions 1396D.2 Acid–Base Reactions 1406D.3 Complexation Reactions 1446D.4 Oxidation–Reduction Reactions 1456E Le Châtelier’s Principle 1486F Ladder Diagrams 1506F.1 Ladder Diagrams for Acid–Base Equilibria 1506F.2 Ladder Diagrams for ComplexationEquilibria 1536F.3 Ladder Diagrams for Oxidation–ReductionEquilibria 1556G Solving Equilibrium Problems 1566G.1 A Simple Problem: Solubility of Pb(IO3)2 inWater 1566G.2 A More Complex Problem: The Common IonEffect 1576G.3 Systematic Approach to Solving EquilibriumProblems 1596G.4 pH of a Monoprotic Weak Acid 1606G.5 pH of a Polyprotic Acid or Base 1636G.6 Effect of Complexation on Solubility 1656H Buffer Solutions 1676H.1 Systematic Solution to BufferProblems 1686H.2 Representing Buffer Solutions withLadder Diagrams 1706I Activity Effects 1716J Two Final Thoughts About EquilibriumChemistry 1756K Key Terms 1756L Summary 1756M Suggested Experiments 1766N Problems 1766O Suggested Readings 1786P References 178Chapter7Obtaining and Preparing Samplesfor Analysis 1797A The Importance of Sampling 1807B Designing a Sampling Plan 1827B.1 Where to Sample the TargetPopulation 1827B.2 What Type of Sample to Collect 1857B.3 How Much Sample to Collect 1877B.4 How Many Samples to Collect 1917B.5 Minimizing the Overall Variance 1927C Implementing the Sampling Plan 1937C.1 Solutions 1937C.2 Gases 1957C.3 Solids 1967D Separating the Analyte fromInterferents 2017E General Theory of SeparationEfficiency 2027F Classifying Separation Techniques 2057F.1 Separations Based on Size 2057F.2 Separations Based on Mass or Density 2067F.3 Separations Based on ComplexationReactions (Masking) 2077F.4 Separations Based on a Changeof State 2097F.5 Separations Based on a Partitioning BetweenPhases 2117G Liquid–Liquid Extractions 2157G.1 Partition Coefficients and DistributionRatios 2167G.2 Liquid–Liquid Extraction with No SecondaryReactions 2167G.3 Liquid–Liquid Extractions InvolvingAcid–Base Equilibria 2197G.4 Liquid–Liquid Extractions Involving MetalChelators 2217H Separation versus Preconcentration 2237I Key Terms 2247J Summary 2247K Suggested Experiments 2257L Problems 2267M Suggested Readings 2307N References 231v1400-Fm 9/9/99 7:38 AM Page viviModern Analytical ChemistryChapter 8Gravimetric Methods of Analysis2328AOverview of Gravimetry 2338A.1 Using Mass as a Signal 2338A.2 Types of Gravimetric Methods 2348A.3 Conservation of Mass 2348A.4 Why Gravimetry Is Important 2358B Precipitation Gravimetry 2358B.1 Theory and Practice 2358B.2 Quantitative Applications 2478B.3 Qualitative Applications 2548B.4 Evaluating Precipitation Gravimetry 2548C Volatilization Gravimetry 2558C.1 Theory and Practice 2558C.2 Quantitative Applications 2598C.3 Evaluating Volatilization Gravimetry 2628D Particulate Gravimetry 2628D.1 Theory and Practice 2638D.2 Quantitative Applications 2648D.3 Evaluating Precipitation Gravimetry 2658E Key Terms 2658F Summary 2668G Suggested Experiments 2668H Problems 2678I Suggested Readings 2718J References 272Chapter 9Titrimetric Methods of Analysis 2739AOverview of Titrimetry 2749A.1 Equivalence Points and End Points 2749A.2 Volume as a Signal 2749A.3 Titration Curves 2759A.4 The Buret 2779B Titrations Based on Acid–Base Reactions 2789B.1 Acid–Base Titration Curves 2799B.2 Selecting and Evaluating theEnd Point 2879B.3 Titrations in Nonaqueous Solvents 2959B.4 Representative Method 2969B.5 Quantitative Applications 2989B.6 Qualitative Applications 3089B.7 Characterization Applications 3099B.8 Evaluation of Acid–Base Titrimetry 3119C Titrations Based on Complexation Reactions 3149C.1 Chemistry and Properties of EDTA 3159C.2 Complexometric EDTA Titration Curves 3179C.3 Selecting and Evaluating the End Point 3229C.4 Representative Method 3249C.5 Quantitative Applications 3279C.6 Evaluation of Complexation Titrimetry 3319D Titrations Based on Redox Reactions 3319D.1 Redox Titration Curves 3329D.2 Selecting and Evaluating the End Point 3379D.3 Representative Method 3409D.4 Quantitative Applications 3419D.5 Evaluation of Redox Titrimetry 3509E Precipitation Titrations 3509E.1 Titration Curves 3509E.2 Selecting and Evaluating the End Point 3549E.3 Quantitative Applications 3549E.4 Evaluation of Precipitation Titrimetry 3579F Key Terms 3579G Summary 3579H Suggested Experiments 3589I Problems 3609J Suggested Readings 3669K References 367Chapter10Spectroscopic Methodsof Analysis 36810A Overview of Spectroscopy 36910A.1 What Is Electromagnetic Radiation 36910A.2 Measuring Photons as a Signal 37210B Basic Components of SpectroscopicInstrumentation 37410B.1 Sources of Energy 37510B.2 Wavelength Selection 37610B.3 Detectors 37910B.4 Signal Processors 38010C Spectroscopy Based on Absorption 38010C.1 Absorbance of Electromagnetic Radiation 38010C.2 Transmittance and Absorbance 38410C.3 Absorbance and Concentration: Beer’sLaw 3851400-Fm 9/9/99 7:38 AM Page viiContents10C.4Beer’s Law and MulticomponentSamples 38610C.5 Limitations to Beer’s Law 38610D Ultraviolet-Visible and InfraredSpectrophotometry 38810D.1 Instrumentation 38810D.2 Quantitative Applications 39410D.3 Qualitative Applications 40210D.4 Characterization Applications 40310D.5 Evaluation 40910E Atomic Absorption Spectroscopy 41210E.1 Instrumentation 41210E.2 Quantitative Applications 41510E.3 Evaluation 42210F Spectroscopy Based on Emission 42310G Molecular PhotoluminescenceSpectroscopy 42310G.1 Molecular Fluorescence andPhosphorescence Spectra 42410G.2 Instrumentation 42710G.3 Quantitative Applications Using MolecularLuminescence 42910G.4 Evaluation 43210H Atomic Emission Spectroscopy 43410H.1 Atomic Emission Spectra 43410H.2 Equipment 43510H.3 Quantitative Applications 43710H.4 Evaluation 44010I Spectroscopy Based on Scattering 44110I.1 Origin of Scattering 44110I.2 Turbidimetry and Nephelometry 44110J Key Terms 44610K Summary 44610L Suggested Experiments 44710M Problems 45010N Suggested Readings 45810O References 459Chapter 11Electrochemical Methods of Analysis 46111A Classification of Electrochemical Methods 46211A.1 Interfacial Electrochemical Methods 46211A.2 Controlling and Measuring Current andPotential 462vii11B Potentiometric Methods of Analysis 46511B.1 Potentiometric Measurements 46611B.2 Reference Electrodes 47111B.3 Metallic Indicator Electrodes 47311B.4 Membrane Electrodes 47511B.5 Quantitative Applications 48511B.6 Evaluation 49411C Coulometric Methods of Analysis 49611C.1 Controlled-Potential Coulometry 49711C.2 Controlled-Current Coulometry 49911C.3 Quantitative Applications 50111C.4 Characterization Applications 50611C.5 Evaluation 50711D Voltammetric Methods of Analysis 50811D.1 Voltammetric Measurements 50911D.2 Current in Voltammetry 51011D.3 Shape of Voltammograms 51311D.4 Quantitative and Qualitative Aspectsof Voltammetry 51411D.5 Voltammetric Techniques 51511D.6 Quantitative Applications 52011D.7 Characterization Applications 52711D.8 Evaluation 53111E Key Terms 53211F Summary 53211G Suggested Experiments 53311H Problems 53511I Suggested Readings 54011J References 541Chapter 12Chromatographic and ElectrophoreticMethods 54312A Overview of Analytical Separations 54412A.1 The Problem with SimpleSeparations 54412A.2 A Better Way to Separate Mixtures 54412A.3 Classifying Analytical Separations 54612B General Theory of ColumnChromatography 54712B.1 Chromatographic Resolution 54912B.2 Capacity Factor 55012B.3 Column Selectivity 55212B.4 Column Efficiency 5521400-Fm 9/9/99 7:38 AM Page viiiviiiModern Analytical Chemistry12B.5 Peak Capacity 55412B.6 Nonideal Behavior 55512C Optimizing Chromatographic Separations 55612C.1 Using the Capacity Factor to OptimizeResolution 55612C.2 Using Column Selectivity to OptimizeResolution 55812C.3 Using Column Efficiency to OptimizeResolution 55912D Gas Chromatography 56312D.1 Mobile Phase 56312D.2 Chromatographic Columns 56412D.3 Stationary Phases 56512D.4 Sample Introduction 56712D.5 Temperature Control 56812D.6 Detectors for Gas Chromatography 56912D.7 Quantitative Applications 57112D.8 Qualitative Applications 57512D.9 Representative Method 57612D.10 Evaluation 57712E High-Performance LiquidChromatography 57812E.1 HPLC Columns 57812E.2 Stationary Phases 57912E.3 Mobile Phases 58012E.4 HPLC Plumbing 58312E.5 Sample Introduction 58412E.6 Detectors for HPLC 58412E.7 Quantitative Applications 58612E.8 Representative Method 58812E.9 Evaluation 58912F Liquid–Solid Adsorption Chromatography 59012G Ion-Exchange Chromatography 59012H Size-Exclusion Chromatography 59312I Supercritical Fluid Chromatography 59612J Electrophoresis 59712J.1 Theory of Capillary Electrophoresis 59812J.2 Instrumentation 60112J.3 Capillary Electrophoresis Methods 60412J.4 Representative Method 60712J.5 Evaluation 60912K Key Terms 60912L Summary 61012M Suggested Experiments 61012N Problems 61512O Suggested Readings12P References 620620Chapter 13Kinetic Methods of Analysis62213A Methods Based on Chemical Kinetics 62313A.1 Theory and Practice 62413A.2 Instrumentation 63413A.3 Quantitative Applications 63613A.4 Characterization Applications 63813A.5 Evaluation of Chemical KineticMethods 63913B Radiochemical Methods of Analysis 64213B.1 Theory and Practice 64313B.2 Instrumentation 64313B.3 Quantitative Applications 64413B.4 Characterization Applications 64713B.5 Evaluation 64813C Flow Injection Analysis 64913C.1 Theory and Practice 64913C.2 Instrumentation 65113C.3 Quantitative Applications 65513C.4 Evaluation 65813D Key Terms 65813E Summary 65913F Suggested Experiments 65913G Problems 66113H Suggested Readings 66413I References 665Chapter 14Developing a Standard Method 66614A Optimizing the Experimental Procedure 66714A.1 Response Surfaces 66714A.2 Searching Algorithms for ResponseSurfaces 66814A.3 Mathematical Models of ResponseSurfaces 67414B Verifying the Method 68314B.1 Single-Operator Characteristics 68314B.2 Blind Analysis of Standard Samples 68314B.3 Ruggedness Testing 68414B.4 Equivalency Testing 6871400-Fm 9/9/99 7:38 AM Page ixContents14CValidating the Method as a StandardMethod 68714C.1 Two-Sample Collaborative Testing 68814C.2 Collaborative Testing and Analysis ofVariance 69314C.3 What Is a Reasonable Result for aCollaborative Study? 69814D Key Terms 69914E Summary 69914F Suggested Experiments 69914G Problems 70014H Suggested Readings 70414I References 704Chapter 15Quality Assurance70515A Quality Control 70615B Quality Assessment 70815B.1 Internal Methods of QualityAssessment 70815B.2 External Methods of QualityAssessment 71115C Evaluating Quality Assurance Data 71215C.1 Prescriptive Approach 71215C.2 Performance-Based Approach 71415D15E15F15G15H15IKey Terms 721Summary 722Suggested Experiments 722Problems 722Suggested Readings 724References 724AppendixesAppendix 1AAppendix 1BAppendix 1CAppendix 1DAppendix 1EAppendix 2Appendix 3AAppendix 3BAppendix 3CAppendix 3DAppendix 3EAppendix 4Appendix 5Appendix 6Appendix 7GlossaryIndexSingle-Sided Normal Distribution 725t-Table 726F-Table 727Critical Values for Q-Test 728Random Number Table 728Recommended Reagents for Preparing PrimaryStandards 729Solubility Products 731Acid Dissociation Constants 732Metal–Ligand Formation Constants 739Standard Reduction Potentials 743Selected Polarographic Half-Wave Potentials 747Balancing Redox Reactions 748Review of Chemical Kinetics 750Countercurrent Separations 755Answers to Selected Problems 762769781ix1400-Fm 9/9/99 7:38 AM Page xxModern Analytical ChemistryA Guide to Using This Text.
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.