M. Hargittai, I. Hargittai - Symmetry through the Eyes of a Chemist (793765), страница 48
Текст из файла (страница 48)
F. A. Cotton, Chemical Applications of Group Theory, Third Edition, WileyInterscience, New York, 1990.7. D. C. Harris, M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction toVibrational and Electronic Spectroscopy, Dover Publications, New York, 1989.8. M. Orchin, H. H. Jaffe, Symmetry Orbitals, and Spectra (S.O.S), WileyInterscience, New York, 1971.9. Hanna, Quantum Mechanics in Chemistry.10.
Atkins, Friedman, Molecular Quantum Mechanics.11. George, Principles of Quantum Chemistry.12. Hanna, Quantum Mechanics in Chemistry.13. Cotton, Chemical Applications of Group Theory.14. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics ofAtomic Spectra, Academic Press, New York, 1959.15. Harris, Bertolucci, Symmetry and Spectroscopy.16. Ibid, p. 3.17. Ibid.18. T. H. Lowry, K.
S. Richardson, Mechanism and Theory in Organic Chemistry;Third Edition. Harper and Row, New York (1987)19. Maple V, Release 2, Waterloo Maple Software, University of Waterloo, Ontario,Canada.20. C. A. Coulson, The Shape and Structure of Molecules, Clarendon Press,Oxford, 1973.References30921. G. Lanza, Z. Varga, M.
Kolonits, M. Hargittai, “On the Effect of 4f Electronson the Structural Characteristics of Lanthanide Trihalides. Computational andElectron Diffraction Study of Dysprosium Trichloride.” J. Chem. Phys. 2008,128, 074301-1–14.22. Drawn with Gaussview, Version 4.1.2, A.
Frisch, R. D. Dennington II,T. D. Keith and J. Millam, Gaussview 4 Reference, Gaussian Inc., 2007.23. Cotton, Chemical Applications of Group Theory.24. Drawn with Gaussview (for reference, see, [22]).25. Harris, Bertolucci, Symmetry and Spectroscopy.26. Ibid.27. Ibid.28. Drawn with Gaussview (for reference, see, [22]).29. Ibid.30. Cotton, Chemical Applications of Group Theory.31. J. L. Gay-Lussac, “Memoir on the Combination of Gaseous Substances withEach Other.” Mémoires de la Société d’Arcueil 1809, 2, 207–234, as translatedin Alembic Club Reprint No. 4, (Edinburgh, 1890).32.
Levine, Quantum Chemistry.33. Atkins, Friedman, Molecular Quantum Mechanics.34. George, Principles of Quantum Chemistry.35. Hanna, Quantum Mechanics in Chemistry.36. Encyclopedia of Computational Chemistry, eds. P. v. R. Schleyer,N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III,P. R. Schreiner, Wiley, Chichester, 1998.37.
I. Hargittai, M. Hargittai, Symmetry through the Eyes of a Chemist, SecondEdition, Plenum, New York, 1995, p. 272.38. M. Hargittai, I. Hargittai, “Aspects of Structural Chemistry in MolecularBiology”, In: A. Domenicano, I. Hargittai, eds.: Strength from Weekness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, andCrystals, Kluwer, Dordrecht, 2002, pp. 91–119.39. M. Hargittai, I. Hargittai, “Experimental and Computed Bond Lengths: TheImportance of Their Differences.” Int.
J. Quant. Chem. 1992, 44, 1057–1067.40. I. Hargittai, M. Hargittai, “The Importance of Small Structural Differences,”in Molecular Structure and Energetics, Vol. 2, Chapter 1, J. F. Liebman andA. Greenberg, eds., VCH Publishers, New York, 1987, pp. 1–35.41. R. Hilgenfeld, W. Saenger, “Stetter’s Complexes are no Intramolecular Inclusion Compounds.” Angew. Chem. Int. Ed. Eng. 1982, 21, 787–788.42. K. B.
Borisenko, C. W. Bock, I. Hargittai, “Intramolecular Hydrogen Bondingand Molecular Geometry of 2-Nitrophenol from a Joint Gas-Phase ElectronDiffraction and Ab Initio Molecular Orbital Investigation.” J. Phys. Chem.1994, 98, 1442–1448.3106 Electronic Structure of Atoms and Molecules43. M. Hargittai, P. Schwerdtfeger, B. Réffy, R. Brown, “The Molecular Structureof Different Species of Cuprous Chloride from Gas-Phase Electron Diffractionand Quantum Chemical Calculation.”Chem. Eur. J. 2003, 9, 327–333.44.
B. Vest, Z. Varga, M. Hargittai, A. Hermann, P. Schwerdtfeger, “The ElusiveStructure of CrCl2 — A Combined Computational and Gas Phase ElectronDiffraction Study.” Chem. Eur. J. 2008, 14, 5130–5143.45. Z. Varga, G. Lanza, C. Minichino, M. Hargittai, “Quasilinear Moleculepar Excellence, SrCl2 : Structure from High-Temperature Gas-Phase ElectronDiffraction and Quantum Chemical Calculations; Computed Structures ofSrCl2 -Argon Complexes.” Chem.
Eur. J. 2006, 12, 8345–8357.46. R. D. Levine, “The Chemical Shape of Molecules — An Introduction toDynamic Stereochemistry.” J. Phys. Chem. 1990, 94, 8872–8880.47. H. F. Schafer III., “Computers and Molecular Quantum Mechanics: 1965–2001,a personal perspective.” J. Mol. Struct. (Theochem) 2001, 573, 129–137.48. H.
F. Schafer III, Private communication to one of the authors (IH) at the10th Conference on the Current Trends in Computational Chemistry, Jackson,Mississippi, 2001.49. H. Bethe, “Termaufspaltung in Kristallen (Splitting of Terms in Crystals).” Ann.Phys. 1929, 3, 133–208.50.
F. A. Cotton, G. Wilkinson, P. L. Gaus, Basic Inorganic Chemistry, SecondEdition, John Wiley & Sons, New York, 1987.51. Ibid.52. A. Ceulemans, D. Beyens, L. G. Vanquickenborne, “Symmetry Aspects ofJahn–Teller Activity—Structure and Reactivity.” J. Am. Chem. Soc. 1984, 106,5824–5837.53. H. A. Jahn, E.
Teller, “Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy.” Proc. Roy. Soc. 1937, A161, 220–235.54. T. A. Barckholtz, T. A. Miller, “Quantitative Insights about MoleculesExhibiting Jahn–Teller and Related Effects.” Int. Rev. Phys. Chem.
1998, 17,435–524.55. I. B. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in ModernChemistry, Plenum Press, New York, 1984.56. I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals, Springer-Verlag, Berlin, 1989.57. I. B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge,2006.58. I. B. Bersuker, “Jahn–Teller Effect in Crystal-Chemistry and Spectroscopy.”Coord.
Chem. Rev. 1975, 14, 357–412.59. I. B. Bersuker, “Modern Aspects of the Jahn–Teller Effect Theory and Applications to Molecular Problems.” Chem. Rev. 2001, 101, 1067–1114.60. I. B. Bersuker, “The Jahn–Teller Effect As a General Tool for Solving Molecular and Solid State Problems: Novel Findings.” J. Mol. Struct. 2007, 838,44–52.61. Jahn, Teller, Proc. Roy. Soc. 220–235.References31162. J. S. Wright, G. A. GiLabio, “Structure and Stability of Small Hydrogen Rings.”J.
Phys. Chem. 1992, 96, 10793–10799.63. B. E. Applegate, T. E. Miller, J. Chem. Phys. 2002, 17, 10654–10674.64. Cotton et al., Basic Inorganic Chemistry.65. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry.66. Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.67. Bersuker, The Jahn–Teller Effect.68. A.
F. Wells, Structural Inorganic Chemistry, Fourth Edition, Clarendon Press,Oxford, 1975.69. Ibid.70. Ibid.71. Ibid.72. J. E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, ThirdEdition, Harper & Row Publishers, New York, 1983.73. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry.74.
Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.75. Bersuker, The Jahn–Teller Effect.76. Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.77. Bersuker, Coord. Chem. Rev. 357–412.78. Ibid.79. Huheey, Inorganic Chemistry Principles of Structure and Reactivity.80. M. Hargittai, B. Réffy, M. Kolonits, C. J. Marsden, J.-L. Heully, “The Structureof the Free MnF3 Molecule – A Beautiful Example of the Jahn–Teller Effect.”J.
Am. Chem. Soc. 1997, 119, 9042–9048.81. B. Réffy, M. Kolonits, A. Schulz, T. M. Klapötke, M. Hargittai, “IntriguingGold Trifluoride – Molecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study.” J. Am. Chem. Soc. 2000, 122,3127–3134.82. M. Hargittai, A. Schulz, B. Réffy, M. Kolonits, “Molecular Structure, Bondingand Jahn–Teller Effect in Gold Chlorides: Quntum Chemical Study of AuCl3 ,Au2 Cl6 , AuCl4 - , AuCl, and Au2 Cl2 and Electron Diffraction Study of Au2 Cl6 .”J. Am.
Chem. Soc. 2001, 123, 1449–1458.83. A. Schulz, M. Hargittai, “Structural Variations and Bonding in Gold Halides.A Quantum Chemical Study of Monomeric and Dimeric Gold Monohalide andGold Trihalide Molecules, AuX, Au2 X2 , AuX3 , and Au2 X6 (X = F, Cl, Br, I).”Chem. Eur. J. 2001, 7, 3657–3670.84. Hargittai et al. J. Am. Chem.
Soc. 2001, p. 1455.85. I. Hargittai, M. Hargittai, “Edward Teller.” Chem. Intell. 1997, 3, 14–23.86. R. Renner, “Zur Theorie der Wechselwirkung zwischen Elektronen- und Kernbewegung bei dreiatomigen, stabförmigen Molekülen.“ Z. Phys. 1934, 92,172–193.87. K. Dressler, D. A. Ramsay, “The Electronic Absorption Spectra of NH2 andND2 .” Phil.
Trans. Roy. Soc. London 1959, 251A, 553–602.3126 Electronic Structure of Atoms and Molecules88. Vest et al., Chem. Eur. J. 5130–5143.89. J. W. Tracy, N. W. Gregory, E. C. Lingafelter, J. D. Dunitz, H.-C. Mez,R. E. Rundle, C. Scheringer, H. L. Yakel, M. K. Wilkinson, “The crystal structure of chromium(II) chloride.” Acta Cryst. 1961, 14, 927–929.90. Bersuker, Chem. Rev. 1067–1114.91. Ibid.92.
Bersuker, J. Mol. Struct. 44–52.Chapter 7Chemical ReactionsBy some fortuitous concourse of atoms.Marcus Tullius Cicero [1]The chemical reaction is the “most chemical” event. The first application of symmetry considerations to chemical reactions can beattributed to Wigner and Witmer [2]. The Wigner–Witmer rulesare concerned with the conservation of spin and orbital angularmomentum in the reaction of diatomic molecules. Although symmetryis not explicitly mentioned, it is present implicitly in the principle ofconservation of orbital angular momentum. It was Emmy Noether(1882–1935), a German mathematician, who established that therewas a one-to-one correspondence between symmetry and the differentconservation laws [3, 4].The real breakthrough in recognizing the role that symmetry playsin determining the course of chemical reactions has occurred onlyrecently, mainly through the activities of Woodward and Hoffmann[5, 6], Fukui [7, 8], Bader [9, 10], Pearson [11], Halevi [12, 13],and others.