Adrian Bejan(Editor), Allan D. Kraus (Editor). Heat transfer Handbok (776115), страница 58
Текст из файла (страница 58)
(1994). Review of Elastic and Plastic Contact Conductance Models: Comparison with Experiment, J. Thermophys. Heat Transfer, 8(4), 633–640.Sridhar, M. R., and Yovanovich, M. M. (1996a). Thermal Contact Conductance of Tool Steeland Comparison with Model, Int. J. Heat Mass Transfer, 39(4), 831–839.Sridhar, M. R., and Yovanovich, M. M. (1996b). Empirical Methods to Predict Vickers Microhardness, Wear, 193, pp.
91–98.Sridhar, M. R., and Yovanovich, M. M. (1996c). Elastoplastic Contact Model for IsotropicConforming Rough Surfaces and Comparison with Experments, J. Heat Transfer, 118(1),3–9.Sridhar, M. R., and Yovanovich, M. M. (1996d). Elastoplastic Constriction Resistance Modelfor Sphere-Flat Contacts, J. Heat Transfer, 118(1), 202–205.Stevanović, M., Yovanovich, M. M., and Culham, J. R. (2002). Modeling Thermal Contact Resistance between Elastic Hemisphere and Elastic Layer on Bonded Elastic Substrate, Proc.8th Intersociety Conference on Thermal and Thermomechanical Phenomena in ElectronicSystems, San Diego, CA, May 29–June 1.Stratton, J.
A. (1941). Electromagnetic Theory, McGraw-Hill, New York, pp. 207–211.Strong, A. B., Schneider, G. E., and Yovanovich, M. M. (1974). Thermal Constriction Resistance of a Disc with Arbitrary Heat Flux: Finite Difference Solutions in Oblate SpheroidalCoordinates, AIAA-74-690, AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, Boston, July 15–17.Tabor, D.
(1951). The Hardness of Metals, Oxford University Press, London.Teagan, W. P., and Springer, G. S. (1968). Heat-Transfer and Density Distribution Measurements between Parallel Plates in the Transition Regime, Phys. of Fluids, 11(3), 497–506.Thomas, L. B. (1967). Rarefied Gas Dynamics, Academic Press, New York.Thomas, T. R. (1982). Rough Surfaces, Longman Group, London.Timoshenko, S. P., and Goodier, J. N.
(1970). Theory of Elasticity, 3rd ed., McGraw-Hll, NewYork.Turyk, P. J., and Yovanovich, M. M. (1984). Transient Constriction Resistance for ElementalFlux Channels Heated by Uniform Heat Sources, ASME-84-HT-52, ASME, New York.Veziroglu, T. N. (1967). Correlation of Thermal Contact Conductance Experimental Results,presented at AIAA Thermophysics Specialist Conference, New Orleans, LA.Veziroglu, T. N., and Chandra, S. (1969). Thermal Conductance of Two-Dimensional Constrictions, Prog. Astronaut. Aeronaut., 21, 617–620.Wachman, H. Y. (1962).
The Thermal Accommodation Coefficient: A Critical Survey, ARS J.,32, 2–12.BOOKCOMP, Inc. — John Wiley & Sons / Page 391 / 2nd Proofs / Heat Transfer Handbook / Bejan[391], (131)Lines: 4994 to 5038———0.0pt PgVar———Custom Page (7.0pt)PgEnds: TEX[391], (131)392123456789101112131415161718192021222324252627282930313233343536373839404142434445THERMAL SPREADING AND CONTACT RESISTANCESWalowit, J. A., and Anno, J. N.
(1975). Modern Developments in Lubrication Mechanics,Applied Science Publishers, Barking, Essex, England.Wesley, D. A., and Yovanovich, M. M. (1986). A New Gaseous Gap Conductance Relationship,Nucl. Technol., 72, Jan., 70–74.Whitehouse, D. J., and Archard, J. F. (1970).
The Properties of Random Surfaces of Significance in Their Contact, Proc. R. Soc. London, A316, 97–121.Wiedmann, M. L., and Trumpler, P. R. (1946). Thermal Accommodation Coefficients, Trans.ASME, 68, 57–64.Yovanovich, M. M. (1967). Thermal Contact Resistance across Elastically Deformed Spheres,J. Spacecr. Rockets, 4, 119–122.Yovanovich, M. M. (1969). Overall Constriction Resistance between Contacting Rough, WavySurfaces, Int. J.
Heat Mass Transfer, 12, 1517–1520.Yovanovich, M. M. (1971). Thermal Constriction Resistance between Contacting MetallicParaboloids: Application to Instrument Bearings, in Progress in Astronautics and Aeronautics: Heat Transfer and Spacecraft Control, Vol. 24, J. W. Lucas, ed., AIAA, New York, pp.337–358.Yovanovich, M. M. (1972). Effect of Foils on Joint Resistance: Evidence of Optimum FoilThickness, AIAA-72-283. AIAA 7th Thermophysics Conference, San Antonio, TX, Apr.Yovanovich, M. M. (1976a). General Thermal Constriction Resistance Parameter for AnnularContacts on Circular Flux Tubes, AIAA J., 14(6), 822–824.Yovanovich, M.
M. (1976b). General Expressions for Constriction Resistances of ArbitraryFlux Distributions, in Progress in Astronautics and Aeronautics: Radiative Transfer andThermal Control, Vol. 49, AIAA, New York, pp. 381–396.Yovanovich, M. M. (1976c).
Thermal Constriction Resistance of Contacts on a Half-Space:Integral Formulation, in Progress in Astronautics and Aeronautics: Radiative Transfer andThermal Control, Vol. 49, AIAA, New York, pp. 397–418.Yovanovich, M. M. (1978). Simplified Explicit Elastoconstriction Resistance for Ball/RaceContacts, AIAA-78-84. 16th Aerospace Sciences Meeting, Huntsville, AL, Jan. 16–18.Yovanovich, M. M. (1982). Thermal Contact Correlations, in Progress in Astronautics andAeronautics: Spacecraft Radiative Transfer and Temperature Control, Vol.
83, T. E. Horton,ed., AIAA, New York, pp. 83–95.Yovanovich, M. M. (1986). Recent Developments in Thermal Contact, Gap and Joint Conductance Theories and Experiments, Proc. 8th International Heat Transfer Conference, SanFrancisco, Vol. 1, pp. 35–45.Yovanovich, M. M. (1991). Theory and Applications of Constriction and Spreading ResistanceConcepts for Microelectronic Thermal Management, in Cooling Techniques for Computers,W. Aung, ed., Hemisphere Publishing, New York, pp. 277–332.Yovanovich, M. M. (1997). Transient Spreading Resistance of Arbitrary Isoflux Contact Areas:Development of a Universal Time Function, AIAA-97-2458, AIAA 32nd ThermophysicsConference, Atlanta, GA, June 23–25.Yovanovich, M.
M., and Antonetti, V. W. (1988). Application of Thermal Contact ResistanceTheory to Electronic Packages, in Advances in Thermal Modeling of Electronic Components and Systems, Vol. 1, A. Bar-Cohen and A. D. Kraus, eds., Hemisphere Publishing,New York, pp. 79–128.Yovanovich, M. M., and Burde, S. S. (1977). Centroidal and Area Average Resistances ofNonsymmetric, Singly Connected Contacts, AIAA J., 15(10), 1523–1525.BOOKCOMP, Inc.
— John Wiley & Sons / Page 392 / 2nd Proofs / Heat Transfer Handbook / Bejan[392], (132)Lines: 5038 to 5078———0.0pt PgVar———Custom Page (1.0pt)PgEnds: TEX[392], (132)REFERENCES123456789101112131415161718192021222324252627282930313233343536373839404142434445393Yovanovich, M. M., and Kitscha, W. W. (1974). Modeling the Effect of Air and Oil upon theThermal Resistance of a Sphere-Flat Contact, in Progress in Astronautics and Aeronautics:Thermophysics and Spacecraft Control, Vol. 35, R. G. Hering, ed., AIAA, New York, pp.293–319.Yovanovich, M.
M., and Schneider, G. E. (1977). Thermal Constriction Resistance Due to aCircular Annular Contact, in Progress in Astronautics and Aeronautics, Vol. 56, AIAA,New York, pp. 141–154.Yovanovich, M. M., Burde, S. S., and Thompson, J. C. (1977).
Thermal Constriction Resistance of Arbitrary Planar Contacts with Constant Flux, in Progress in Astronautics andAeronautics: Thermophysics of Spacecraft and Outer Planet Entry Probes, Vol. 56, AIAA,New York, pp. 127–139.Yovanovich, M. M., Tien, C.
H., and Schneider, G. E. (1980). General Solution of ConstrictionResistance within a Compound Disk, in Progress in Astronautics and Aeronautics: HeatTransfer, Thermal Control, and Heat Pipes, Vol. 70, AIAA, New York, pp. 47–62.Yovanovich, M. M., Hegazy, A. A., and DeVaal, J. (1982a). Surface Hardness DistributionEffects upon Contact, Gap and Joint Conductances, AIAA-82-0887, AIAA/ASME 3rd JointThermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, June 7–11.Yovanovich, M.
M., DeVaal, J., and Hegazy, A. A. (1982b). A Statistical Model to Predict Thermal Gap Conductance between Conforming Rough Surfaces, AIAA-82-0888, AIAA/ASME3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO,June 7–11.Yovanovich, M. M., Negus, K. J., and Thompson, J. C. (1984). Transient Temperature Rise ofArbitrary Contacts with Uniform Flux by Surface Element Methods, AIAA-84-0397, AIAA22nd Aerospace Sciences Meeting, Reno, NV, Jan.
9–12.Yovanovich, M. M., Culham, J. R., and Teerstra, P. (1997). Calculating Interface Resistance,Electron. Cool., 3(2), 24–29.Yovanovich, M. M., Culham, J. R., and Teerstra, P. (1998). Analytical Modeling of SpreadingResistance in Flux Tubes, Half Spaces, and Compound Disks, IEEE Trans. ComponentsPackag. Manuf. Technol., A21(1), 168–176.Yovanovich, M. M., Muzychka, Y.
S., and Culham, J. R. (1999). Spreading Resistance ofIsoflux Rectangles and Strips on Compound Flux Channels, J. Thermophys. Heat Transfer,13(4), 495–500.BOOKCOMP, Inc. — John Wiley & Sons / Page 393 / 2nd Proofs / Heat Transfer Handbook / Bejan[393], (133)Lines: 5078 to 5099———*168.371pt PgVar———Custom Page (1.0pt)* PgEnds: PageBreak[393], (133)123456789101112131415161718192021222324252627282930313233343536373839404142434445CHAPTER 5Forced Convection: Internal FlowsADRIAN BEJANDepartment of Mechanical Engineering and Materials ScienceDuke UniversityDurham, North Carolina[First Page]5.15.2IntroductionLaminar flow and pressure drop5.2.1 Flow entrance region5.2.2 Fully developed flow region5.2.3 Hydraulic diameter and pressure drop5.3 Heat transfer in fully developed flow5.3.1 Mean temperature5.3.2 Thermally fully developed flow5.4 Heat transfer in developing flow5.4.1 Thermal entrance region5.4.2 Thermally developing Hagen–Poiseuille flow5.4.3 Thermally and hydraulically developing flow5.5 Optimal channel sizes for laminar flow5.6 Turbulent duct flow5.6.1 Time-averaged equations5.6.2 Fully developed flow5.6.3 Heat transfer in fully developed flow5.7 Total heat transfer rate5.7.1 Isothermal wall5.7.2 Wall heated uniformly5.8 Optimal channel sizes for turbulent flow5.9 Summary of forced convection relationshipsNomenclatureReferences5.1[395], (1)Lines: 0 to 85———-0.68391pt PgVar———Normal PagePgEnds: TEX[395], (1)INTRODUCTIONAn internal flow is a flow configuration where the flowing material is surrounded bysolid walls.