Adrian Bejan(Editor), Allan D. Kraus (Editor). Heat transfer Handbok (776115), страница 55
Текст из файла (страница 55)
— John Wiley & Sons / Page 380 / 2nd Proofs / Heat Transfer Handbook / Bejan[380], (120)Lines: 4609 to 4609———0.0059pt PgVar———Normal PagePgEnds: TEX[380], (120)NOMENCLATURE123456789101112131415161718192021222324252627282930313233343536373839404142434445NN (k )nPPg,∞PmPrQQgqRRgR macR micRrRc∗Rg∗Rj∗Rr∗rSfsTTgTg,∞∆T∆TjTT1T2tt1t2uw(x,y)number of sides in a polygon, dimensionlessnumber of discrete sources, dimensionlessnumber of microcontacts, dimensionlessnumerator function, dimensionlesscounter, dimensionlessHertz elastic parameter, dimensionlesscombination parameter, dimensionlesscontact spot density, 1/m2perimeter, mpressure, N/m2 or Pareference gas pressure, N/m2 or Pamean contact area pressure, N/m2 or PaPrandtl number, dimensionlessheat transfer rate, Wgap heat transfer rate, Wheat flux, W/m2thermal resistance, K/Wthermal resistance of gap, K/Wmacroscopic thermal resistance of gap, K/Wmicroscopic thermal resistance of gap, K/Wradiation resistance, K/Wcombination of terms, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlessradial coordinate, mmaterial yield or flow stress, N/m2side dimension, mtemperature, Kgas molecule temperature, Kreference temperature, Ktemperature drop or difference, Kjoint temperature drop, Karea-averaged temperature, Ktemperature, Ktemperature, Klayer thickness, mthickness of elastic layer, mtime, slayer 1 thickness, mthickness of isotropic plate, mlayer 2 (substrate) thickness, mlocal gap thickness, dimensionlessposition, dimensionlesstotal local displacement, mBOOKCOMP, Inc.
— John Wiley & Sons / Page 381 / 2nd Proofs / Heat Transfer Handbook / Bejan381[381], (121)Lines: 4609 to 4609———0.91072pt PgVar———Normal PagePgEnds: TEX[381], (121)382123456789101112131415161718192021222324252627282930313233343536373839404142434445woXcxYYcyzTHERMAL SPREADING AND CONTACT RESISTANCESapproach of contacting bodies due to loading, mcoordinate of center of eccentric rectangular area, mlength coordinate, mmean plane separation, mcoordinate of center of eccentric rectangular area, mdistance, mlength coordinate, mlength coordinate, mGreek Letter Symbolsαratio of semimajor axes, dimensionlessthermal diffusivity, m2/sthermal conductivity ratio, dimensionlessaccommodation parameter or coefficient, dimensionlessaccommodation coefficient, dimensionlessα1accommodation coefficient, dimensionlessα2βcombination of terms, dimensionlessfluid property parameter, dimensionlesseigenvalue, dimensionlessβm,nΓ(x)gamma function of argument x, dimensionlessγaspect ratio parameter, dimensionlessratio of specific heats, dimensionlesscombination of terms, dimensionlessγT∆change in, dimensionlessphysical parameter, m2 /Nδlocal gap thickness, mlocal gap thickness under zero-load conditions, mδ0eigenvalue, dimensionlessδmeigenvalues of Jn (x), dimensionlessδnradius ratio, dimensionlessellipse aspect ratio, dimensionlessemissivity of hemisphere, dimensionlessemissivity of disk, dimensionlessrelative contact spot size, dimensionlesscontact strain, dimensionlesscζellipsoidal coordinate, mdummy variable, dimensionlessθtemperature excess, Kθarea averaged temperature rise, Kθ(r,z)temperature excess field, Kθ(τ)ellipsoidal temperature rise, Kcentroid temperature rise, Kθotemperature rise due to spreading, Kθsκparameter, dimensionlessBOOKCOMP, Inc.
— John Wiley & Sons / Page 382 / 2nd Proofs / Heat Transfer Handbook / Bejan[382], (122)Lines: 4609 to 4696———0.77428pt PgVar———Normal PagePgEnds: TEX[382], (122)NOMENCLATURE123456789101112131415161718192021222324252627282930313233343536373839404142434445ΛΛgΛoλλ1λ2λnµνξρρn,e1σττ1τ2τ∗φφnϕϕ+ϕ−ψψmacψmicψoψnψe,iψ∗ψ12ω∇2383thermal conductivity ratio, dimensionlessmean free path length of gas molecules, mmolecular mean free path length at reference temperature, mreference value of mean free path length, mdummy variable, dimensions varyrelative mean free path length, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlesseigenvalue, dimensionlessdynamic viscosity, N · s2/mpositive root of an equation, dimensionlessmolecular weight ratio, dimensionlessarbitrary order of Bessel function, dimensionlessPoisson’s ratio, dimensionlesslength ratio, dimensionlessradius of curvature, mradius of elastic hemisphere, mboundary condition parameter, dimensionlessrectangular aspect ratio, dimensionlesscombination of terms, dimensionlessStefan–Boltzmann constant, 5.67 × 10−8 W/m2 · K4effective surface roughness, m or micronsthickness, dimensionlessthickness, dimensionlessthickness, dimensionlesscombination of terms, dimensionlessangle, radcombination of terms, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlesslayer parameter, dimensionlesslayer parameter, dimensionlesscombination of terms, dimensionlessspreading resistance, dimensionlessspreading–constriction parameter, dimensionlessamplitude angle, radmacroscopic spreading–constriction parameter, dimensionlessmicroscopic spreading–constriction parameter, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlesscombination of terms, dimensionlessthermal elasto constriction parameter, dimensionlessdimensional spreading resistance in layer–substrateangle, radLaplacian operator, 1/m2BOOKCOMP, Inc.
— John Wiley & Sons / Page 383 / 2nd Proofs / Heat Transfer Handbook / Bejan[383], (123)Lines: 4696 to 4756———0.93477pt PgVar———Normal PagePgEnds: TEX[383], (123)384123456789101112131415161718192021222324252627282930313233343536373839404142434445THERMAL SPREADING AND CONTACT RESISTANCESSubscriptsaaveBcc, 1c, 2circleeeiepellipsegg, 1g, 2g, ∞jlayer1 layer2 layerLmmamimacmaxmetalmicnn, enewopqrssourcesinknominal valueaverageBrinnellflux tube areaactive areacontactcontact 1contact 2circleelastic contact radiuslayer thickness parameterelastic–plastic radiusellipsegapgap 1gap 2gas conductivity under continuum conditionsjointlayerone layertwo layersthick layercountermeanmacrogapmicrocontactmacroscopicmaximummetalmicroscopicnormal componentcountercombination of termsnew valueouterplastic contact radiuspolymerlayer thickness parameterradiation or radiativespreadingthin layersource areasourcesinkBOOKCOMP, Inc.
— John Wiley & Sons / Page 384 / 2nd Proofs / Heat Transfer Handbook / Bejan[384], (124)Lines: 4756 to 4756———0.20874pt PgVar———Normal PagePgEnds: TEX[384], (124)REFERENCES123456789101112131415161718192021222324252627282930313233343536373839404142434445vtthickthintotal1D01o∞SuperscriptsinqT∗385Vickerstubethickthintotalone-dimensionalorder 0order 1value at centroid of areasink temperatureidentifies ith source parametershape parameterisoflux boundary conditionisothermal boundary conditioncomposite value[385], (125)Lines: 4756 to 4792———0.16562pt PgVarREFERENCESAbramowitz, M., and Stegun, I.
A. (1965). Handbook of Mathematical Functions, Dover, NewYork.Antonetti, V. W. (1983). On the Use of Metallic Coatings to Enhance Thermal Contact Conductance, Ph.D. dissertation, University of Waterloo, Waterloo, Ontario, Canada.Antonetti, V. W., and Yovanovich, M. M. (1983). Using Metallic Coatings to Enhance ThermalContact Conductance of Electronic Packages, in Heat Transfer in Electronic Equipment,1983, ASME-HTD-28, ASME, New York, pp.
71–77.Antonetti, V. W., and Yovanovich, M. M. (1985). Enhancement of Thermal Contact Conductance by Metallic Coatings: Theory and Experiments, J. Heat Transfer, 107, Aug., pp. 513–519.Antonetti, V. W., Whittle, T. D., and Simons, R. E. (1991). An Approximate Thermal ContactConductance Correlation, in Experimental/Numerical Heat Transfer in Combustion andPhase Change, ASME-HTD-170, ASME, New York.Beck, J. V. (1979). Average Transient Temperature within a Body Heated by a Disk HeatSource, in Heat Transfer, Thermal Control, and Heat Pipes, Progress in Aeronautics andAstronautics, Vol. 70, AIAA, New York, pp. 3–24.Blackwell, J. H.
(1972). Transient Heat Flow from a Thin Circular Disk Small-Time Solution,J. Aust. Math. Soc., 14, 433–442.Braun, D., and Frohn, A. (1976). Heat Transfer in Simple Monatomic Gases and in BinaryMixtures of Monatomic Gases, Int. J. Heat and Mass Transfer, 19, 1329–1335.Burde, S.
S. (1977). Thermal Contact Resistance between Smooth Spheres and Rough Flats,Ph.D. Dissertation, Department of Mechanical Engineering, University at Waterloo, Waterloo, Ontario, Canada.BOOKCOMP, Inc. — John Wiley & Sons / Page 385 / 2nd Proofs / Heat Transfer Handbook / Bejan———Normal PagePgEnds: TEX[385], (125)386123456789101112131415161718192021222324252627282930313233343536373839404142434445THERMAL SPREADING AND CONTACT RESISTANCESBurde, S. S., and Yovanovich, M. M.