Adrian Bejan(Editor), Allan D. Kraus (Editor). Heat transfer Handbok (776115), страница 31
Текст из файла (страница 31)
Technical Note on Planar Solidification with FixedWall Temperature and Variable Thermal Properties, J. Heat Transfer, 93, 553–555.BOOKCOMP, Inc. — John Wiley & Sons / Page 259 / 2nd Proofs / Heat Transfer Handbook / Bejan[259], (99)Lines: 4552 to 4600———0.0pt PgVar———Custom Page (2.0pt)PgEnds: TEX[259], (99)260123456789101112131415161718192021222324252627282930313233343536373839404142434445CONDUCTION HEAT TRANSFERPletcher, R. H., Minkowycz, W.
J., Sparrow, E. M., and Schneider, G. E. (1988). Overviewof Basic Numerical Methods, in Handbook of Numerical Heat Transfer, W. J. Minkowycz,E. M. Sparrow, G. E. Schneider, and R. H. Pletcher, eds., Wiley, New York, Chap. 1.Poulikakos, D. (1994). Conduction Heat Transfer, Prentice Hall, Englewood Cliffs, NJ.Riley, D.
S., and Duck, P. W. (1977). Application of the Heat Balance Integral Method to theFreezing of a Cuboid, Int. J. Heat Mass Transfer, 20, 294–296.Rubinsky, B., and Eto, T. K. (1990). Heat Transfer during Freezing of Biological Materials, inAnnual Review of Heat Transfer, C. L. Tien, ed., Hemisphere Publishing, Washington, DC,Chap. 1.Sahin, A. Z. (1992).
Transient Heat Conduction in Semi-infinite Solid with Spatially DecayingExponential Heat Generation, Int. Commun. Heat Mass Transfer, 19, 349–358.Schneider, P. J. (1955). Conduction Heat Transfer, Addison-Wesley, Reading, MA.Sen, A. K., and Trinh, S. (1986). An Exact Solution for the Rate of Heat Transfer from aRectangular Fin Governed by Power Law Type Temperature Difference, J. Heat Transfer,108, 457–459.Seniraj, R. V., and Bose, T. K. (1982).
One-Dimensional Phase Change Problems with Radiation–Convection, J. Heat Transfer, 104, 811–813.Shamsundar, N. (1982). Approximate Calculation of Multidimensional Solidification UsingConduction Shape Factors, J. Heat Transfer, 104, 8–12.Solomon, A. D., Wilson, D. G., and Alexiades, V. (1982). A Mushy Zone Model with an ExactSolution, Lett. Heat Mass Transfer, 9, 319–324.Tao, L. N. (1978). The Stefan Problem with Arbitrary Initial and Boundary Conditions, Q.Appl.
Math., 36, 223–233.Tien, C. L., and Chen, G. (1994). Challenges in Microscale Conduction and Radiative HeatTransfer, J. Heat Transfer, 116, 799–807.Tien, C. L., Majumdar, A., and Gerner, F. M. (1998). Microscale Energy Transport, Taylor &Francis, Washington, DC.Tzou, D. Y. (1997). Macro- to Microscale Heat Transfer, Taylor & Francis, Washington, DC.Ullman, A., and Kalman, H. (1989). Efficiency and Optimized Dimensions of Annular Fins ofDifferent Cross Sections, Int. J. Heat Mass Transfer, 32, 1105–1111.Viskanta, R. (1983).
Phase Change Heat Transfer, in Solar Heat Storage: Latent Heat Materials, G. A. Lane, ed., CRC Press, Boca Raton, FL, pp. 153–222.Viskanta, R. (1988). Heat Transfer during Melting and Solidification of Metals, J. Heat Transfer, 110, 1205–1219.Yan, M. M., and Huang, P. N. S. (1979). Perturbation Solutions to Phase Change ProblemSubject to Convection and Radiation, J.
Heat Transfer, 101, 96–100.Zhuang, J. R., Werner, K., and Schlünder, E. U. (1995). Study of Analytical Solution to theHeat Transfer Problem and Surface Temperature in a Semi-infinite Body with a ConstantHeat Flux at the Surface and an Initial Temperature Distribution, Heat Mass Transfer, 30,183–186.BOOKCOMP, Inc. — John Wiley & Sons / Page 260 / 2nd Proofs / Heat Transfer Handbook / Bejan[Last Page][260], (100)Lines: 4600 to 4639———62.87401pt PgVar———Normal PagePgEnds: TEX[260], (100)123456789101112131415161718192021222324252627282930313233343536373839404142434445CHAPTER 4Thermal Spreading and ContactResistancesM. M.YOVANOVICHDepartment of Mechanical EngineeringUniversity of WaterlooWaterloo, Ontario, Canada[First Page]E.
E. MAROTTA[261], (1)Thermal Technologies GroupIBM CorporationPoughkeepsie, New YorkLines: 0 to 101———4.14.24.34.4Introduction4.1.1 Types of joints or interfaces4.1.2 Conforming rough solids4.1.3 Nonconforming smooth solids4.1.4 Nonconforming rough solids4.1.5 Single layer between two conforming rough solids4.1.6 Parameters influencing contact resistance or conductance4.1.7 Assumptions for resistance and conductance model developmentDefinitions of spreading and constriction resistances4.2.1 Spreading and constriction resistances in a half-space4.2.2 Spreading and constriction resistances in flux tubes and channelsSpreading and constriction resistances in an isotropic half-space4.3.1 Introduction4.3.2 Circular area on a half-spaceIsothermal circular sourceIsoflux circular source4.3.3 Spreading resistance of an isothermal elliptical source area on a half-space4.3.4 Dimensionless spreading resistance of an isothermal elliptical area4.3.5 Approximations for dimensionless spreading resistance4.3.6 Flux distribution over an isothermal elliptical areaSpreading resistance of rectangular source areas4.4.1 Isoflux rectangular area4.4.2 Isothermal rectangular area4.4.3 Isoflux regular polygonal area4.4.4 Arbitrary singly connected area4.4.5 Circular annular areaIsoflux circular annulusIsothermal circular annulus261BOOKCOMP, Inc.
— John Wiley & Sons / Page 261 / 2nd Proofs / Heat Transfer Handbook / Bejan5.76408pt PgVar———Normal PagePgEnds: TEX[261], (1)262123456789101112131415161718192021222324252627282930313233343536373839404142434445THERMAL SPREADING AND CONTACT RESISTANCES4.4.64.54.64.74.84.94.104.114.124.134.144.15Other doubly connected areas on a half-spaceEffect of contact conductance on spreading resistanceTransient spreading resistance in an isotropic half-space4.5.1 Isoflux circular area4.5.2 Isoflux hyperellipse4.5.3 Isoflux regular polygonsSpreading resistance within a compound disk with conductance4.6.1 Special cases of the compound disk solution4.6.2 Half-space problems4.6.3 Semi-infinite flux tube problems4.6.4 Isotropic finite disk with conductanceSpreading resistance of isotropic finite disks with conductance4.7.1 Correlation equations4.7.2 Circular area on a single layer (coating) on a half-spaceEquivalent isothermal circular contact4.7.3 Isoflux circular contact4.7.4 Isoflux, equivalent isothermal, and isothermal solutionsIsoflux contact areaEquivalent isothermal contact areaIsothermal contact areaCircular area on a semi-infinite flux tube4.8.1 General expression for a circular contact area with arbitrary flux on a circularflux tubeFlux distributions of the form (1 − u2 )µEquivalent isothermal circular sourceIsoflux circular sourceParabolic flux distributionAsymptotic values for dimensionless spreading resistancesCorrelation equations for spreading resistanceSimple correlation equations4.8.2 Accurate correlation equations for various combinations of source areas, fluxtubes, and boundary conditionsMultiple layers on a circular flux tubeSpreading resistance in compound rectangular channels4.10.1 Square area on a semi-infinite square flux tube4.10.2 Spreading resistance of a rectangle on a layer on a half-space4.10.3 Spreading resistance of a rectangle on an isotropic half-spaceStrip on a finite channel with coolingStrip on an infinite flux channel4.12.1 True isothermal strip on an infinite flux channel4.12.2 Spreading resistance for an abrupt change in the cross sectionTransient spreading resistance within isotropic semi-infinite flux tubes and channels4.13.1 Isotropic flux tube4.13.2 Isotropic semi-infinite two-dimensional channelSpreading resistance of an eccentric rectangular area on a rectangular plate with cooling4.14.1 Single eccentric area on a compound rectangular plate4.14.2 Multiple rectangular heat sources on an isotropic plateJoint resistances of nonconforming smooth solidsBOOKCOMP, Inc.
— John Wiley & Sons / Page 262 / 2nd Proofs / Heat Transfer Handbook / Bejan[262], (2)Lines: 101 to 195———1.0pt PgVar———Long PagePgEnds: TEX[262], (2)THERMAL SPREADING AND CONTACT RESISTANCES1234567891011121314151617181920212223242526272829303132333435363738394041424344452634.15.1Point contact modelSemiaxes of an elliptical contact area4.15.2 Local gap thickness4.15.3 Contact resistance of isothermal elliptical contact areas4.15.4 Elastogap resistance model4.15.5 Joint radiative resistance4.15.6 Joint resistance of sphere–flat contactContacts in a vacuumEffect of gas pressure on joint resistance4.15.7 Joint resistance of a sphere and a layered substrate4.15.8 Joint resistance of elastic–plastic contacts of hemispheres and flat surfaces ina vacuumAlternative constriction parameter for a hemisphere4.15.9 Ball-bearing resistance4.15.10 Line contact modelsContact strip and local gap thicknessesContact resistance at a line contactGap resistance at a line contactJoint resistance at a line contactJoint resistance of nonconforming rough surfaces4.16 Conforming rough surface models4.16.1 Plastic contact modelPlastic contact geometric parametersCorrelation of geometric parametersRelative contact pressureVickers microhardness correlation coefficientsDimensionless contact conductance: plastic deformation4.16.2 Radiation resistance and conductance for conforming rough surfaces4.16.3 Elastic contact modelElastic contact geometric parametersDimensionless contact conductanceCorrelation equations for surface parameters4.16.4 Conforming rough surface model: elastic–plastic deformationCorrelation equations for dimensionless contact conductance: elastic–plasticmodel4.16.5 Gap conductance for large parallel isothermal plates4.16.6 Gap conductance for joints between conforming rough surfaces4.16.7 Joint conductance for conforming rough surfaces4.17 Joint conductance enhancement methods4.17.1 Metallic coatings and foilsMechanical modelThermal model4.17.2 Ranking metallic coating performance4.17.3 Elastomeric inserts4.17.4 Thermal greases and pastes4.17.5 Phase change materials4.18 Thermal resistance at bolted jointsNomenclatureReferencesBOOKCOMP, Inc.