Adrian Bejan(Editor), Allan D. Kraus (Editor). Heat transfer Handbok (776115), страница 30
Текст из файла (страница 30)
— John Wiley & Sons / Page 255 / 2nd Proofs / Heat Transfer Handbook / Bejan[255], (95)Lines: 4352 to 4420———0.16508pt PgVar———Normal PagePgEnds: TEX[255], (95)256123456789101112131415161718192021222324252627282930313233343536373839404142434445QQsqq̇q RRcRfrSStsTT∗tVWXxyZzCONDUCTION HEAT TRANSFERcumulative heat loss, Jstrength of line sink, W/mrate of heat transfer, Wvolumetric rate of energy generation, W/m3heat flux, W/m2radius, dimensionlessthermal resistance, K/Wcontact resistance, m2 ·K/Wfreezing interface location, dimensionlesscylindrical or spherical coordinate, mshape factor for two-dimensional conduction, mStefan number, dimensionlessgeneral coordinate, mtemperature, KKirchhoff transformed temperature, Ktime, svolume, m3depth, mdistance, dimensionlessCartesian length coordinate, mCartesian length coordinate, maxial distance, dimensionlessCartesian or cylindrical length coordinate, mGreek Letter Symbolsαthermal diffusivity, m 2/s∗ratio of thermal diffusivities, dimensionlessαβconstant, K−1phase angle, radγlength-to-radius ratio, dimensionlessδfin thickness, mfin effectiveness, dimensionlesssurface emissivity or emittance, dimensionlessηfin efficiency, dimensionlessθtemperature difference, Ktemperature parameter, dimensionlesscoordinate in cylindrical or spherical coordinate system,dimensionlesstemperature, dimensionlessθ∗nth eigenvalue, dimensionlessλnνorder of Bessel function, dimensionlessρdensity, kg/m3σStefan–Boltzmann constant, W/m2 ·K 4τtime, dimensionlessφtemperature difference, KBOOKCOMP, Inc.
— John Wiley & Sons / Page 256 / 2nd Proofs / Heat Transfer Handbook / Bejan[256], (96)Lines: 4420 to 4449———0.20833pt PgVar———Normal PagePgEnds: TEX[256], (96)REFERENCES123456789101112131415161718192021222324252627282930313233343536373839404142434445ω257indicates a function, dimensionlessspherical coordinate, dimensionlessangular frequency, rad/sshape parameter, dimensionlessRoman Letter Subscriptsafin tipbfin basecondconductionconvconvectionffinfreezing interfacefluidiintegerinitialidealjintegerlliquidmmeanmeltingmaxmaximumnnormal directionoptoptimumssurface conditionsolidtfin tip0condition at x = 0 or r = 0Additional Subscript and Superscript∞free stream conditionpintegerREFERENCESAbramowitz, M., and Stegun, I.
A. (1955). Handbook of Mathematical Functions, DoverPublications, New York.Adebiyi, G. A. (1995). A Single Expression for the Solution of the One-Dimensional TransientConduction Equation for the Simple Regular Shaped Solids, J. Heat Transfer, 117, 158–160.Alexaides, V., and Solomon, A. D. (1993). Mathematical Modeling of Melting and FreezingProcesses, Hemisphere Publishing, Washington, DC.Andrews, L. C. (1992). Special Functions of Mathematics for Engineers, McGraw-Hill, NewYork.Arpaci, V. S. (1966). Conduction Heat Transfer, Addison-Wesley, Reading, MA.BOOKCOMP, Inc. — John Wiley & Sons / Page 257 / 2nd Proofs / Heat Transfer Handbook / Bejan[257], (97)Lines: 4449 to 4502———0.36996pt PgVar———Normal PagePgEnds: TEX[257], (97)258123456789101112131415161718192021222324252627282930313233343536373839404142434445CONDUCTION HEAT TRANSFERAziz, A.
(1978). New Asymptotic Solutions for the Variable Property Stefan Problem, Chem.Eng. J., 16, 65–68.Aziz, A. (1992). Optimum Dimensions of Extended Surfaces Operating in a Convecting Environment, Appl. Mech. Rev., 45, 155–173.Aziz, A. (1997). The Critical Thickness of Insulation, Heat Transfer Eng., 18, 61–91.Aziz, A. (2001). Heat Conduction with Maple ™. To be published.Aziz, A., and Hamad, G. (1977). Regular Perturbation Expansions in Heat Transfer, Int. J.Mech. Eng., 5, 167–182.Aziz, A., and Kraus, A.
D. (1996). Optimum Design of Convecting and Convecting–RadiatingFins, Heat Transfer Eng., 17, 44–78.Aziz, A., and Lunardini, V. J. (1993). Perturbation Techniques in Phase Change Heat Transfer,Appl. Mech. Rev., 46, 29–68.Aziz, A., and Lunardini, V. J. (1994). Analytical and Numerical Modeling of Steady, Periodic,Heat Transfer in Extended Surfaces, Comput.
Mech., 14, 387–410.Aziz, A., and Lunardini, V. J. (1995). Multi-dimensional Steady Conduction in Convecting,Radiating and Convecting–Radiating Fins and Fin Assemblies, Heat Transfer Eng., 16,32–64.Aziz, A., and Na, T. Y. (1984). Perturbation Methods in Heat Transfer, Hemisphere Publishing,Washington, DC.Beck, J. V., Blackwell, B. F., and St. Clair, C. A., Jr.
(1985). Inverse Heat Conduction, Wiley,New York.Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouhi, B. (1992). Heat Conduction UsingGreen’s Functions, Hemisphere Publishing, Washington, DC.Bejan, A. (1993). Heat Transfer, Wiley, New York.Bejan, A. (2000). Shape and Structure from Engineering to Nature, Cambridge UniversityPress, Cambridge.Beltzer, A. I.
(1995). Engineering Analysis with Maple ™/Mathematica ™, Academic Press, SanDiego, CA.Blackwell, B. F. (1990). Temperature Profile in Semi-infinite Body with Exponential Sourceand Convective Boundary Condition, J. Heat Transfer, 112, 567–571.Budhia, H., and Kreith, F. (1973). Heat Transfer with Melting or Freezing in a Corner, Int. J.Heat Mass Transfer, 16, 195–211.Carslaw, H. S., and Jaeger, J. C. (1959). Conduction of Heat in Solids, Oxford University Press,Oxford.Cheng, K. C., and Seki, N., eds. (1991). Freezing and Melting Heat Transfer in Engineering,Hemisphere Publishing, Washington, DC.Cho, S.
H., and Sunderland, J. E. (1969). Heat Conduction Problems with Freezing or Melting,J. Heat Transfer, 91, 421–428.Cho, S. H., and Sunderland, J. E. (1974). Phase Change Problems with Temperature DependentThermal Conductivity, J. Heat Transfer, 96, 214–217.Churchill, S. W., and Evans, L. B. (1971). Calculation of Freezing in a Semi-infinite Region,J. Heat Transfer, 93, 234–236.Comini, G., Del Guidice, S., Lewis, R.
W., and Zienckiewicz, O. G. (1974). Finite ElementSolution of Nonlinear Heat Conduction Problems with Special Reference to Phase Change,Int. J. Numer. Methods Eng., 8, 613–623.BOOKCOMP, Inc. — John Wiley & Sons / Page 258 / 2nd Proofs / Heat Transfer Handbook / Bejan[258], (98)Lines: 4502 to 4552———2.0pt PgVar———Custom Page (2.0pt)PgEnds: TEX[258], (98)REFERENCES123456789101112131415161718192021222324252627282930313233343536373839404142434445259Comini, G., Del Guidice, S., and Nonino, C. (1994). Finite Element Analysis in Heat Transfer,Taylor & Francis, Washington, DC.Cotta, R.
M., and Mikhailov, M. D. (1997). Heat Conduction: Lumped Analysis, IntegralTransforms and Symbolic Computation, Wiley, New York.Duncan, A. B., and Peterson, G. P. (1994). Review of Microscale Heat Transfer, Appl. Mech.Rev., 47, 397–428.Fletcher, L. S. (1988). Recent Developments in Contact Conductance Heat Transfer, J. HeatTransfer, 110, 1059–1070.Gebhart, B. (1993).
Heat Conduction and Mass Diffusion, McGraw-Hill, New York.Goodman, T. R. (1958). The Heat Balance Integral and Its Application to Problems Involvinga Change of Phase, Trans. ASME, 80, 335–342.Huang, C. L., and Shih, Y. P. (1975). A Perturbation Method for Spherical and CylindricalSolidification, Chem. Eng. Sci., 30, 897–906.Incropera, F., and DeWitt, D. P. (1996). Introduction to Heat Transfer, Wiley, New York.Jaluria, Y., and Torrance, K.
E. (1986). Computational Heat Transfer, Hemisphere Publishing,Washington, DC.Jiji, L. M. (2000). Heat Conduction, Begell House, New York.Kern, D. Q., and Kraus, A. D. (1972). Extended Surface Heat Transfer, McGraw-Hill, NewYork.Kraus, A. D., Aziz, A., and Welty, J.
R. (2001). Extended Surface Heat Transfer, Wiley, NewYork.Lock, G. H. S. (1971). On the Perturbation Solution of the Ice-Layer Problem, Int. J. HeatMass Transfer, 14, 642–644.Lunardini, V. J. (1991). Heat Transfer with Freezing and Thawing, Elsevier Science, Amsterdam.Lynch, D. R., and O’Neill, K. (1981). Continuously Deforming Finite Elements for the Solutionof Parabolic Problems with and without Phase Change, Int. J. Numer. Methods Eng., 17,81–93.Madhusadana, C. V. (1996).
Thermal Contact Conductance, Springer-Verlag, New York.Myers, G. E. (1998). Analytical Methods in Conduction Heat Transfer, AMCHT Publications,Madison, WI.Nguyen, H., and Aziz, A. (1992). Heat Transfer from Conducting–Radiating Fins of DifferentProfile Shapes, Waerme-Stoffuebertrag., 27, 67–72.Ozisik, M. N. (1993). Heat Conduction, Wiley, New York.Ozisik, M. N. (1994). Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton,FL.Ozisik, M. N., and Orlande, H.
R. B. (2000). Inverse Heat Transfer, Taylor & Francis, NewYork.Ozisik, M. N., and Uzzell, J. C., Jr. (1979). Exact Solution for Freezing in Cylindrical Symmetry with Extended Freezing Temperature Range, J. Heat Transfer, 101, 331–334.Parang, M., Crocker, D. S., and Haynes, B. D. (1990). Perturbation Solution for Sphericaland Cylindrical Solidification by Combined Convective and Radiative Cooling, Int. J. HeatFluid Flow, 11, 142–148.Pedroso, R. I., and Domato, G. A. (1973).