МОДЕЛ (774295), страница 3

Файл №774295 МОДЕЛ (Лекции) 3 страницаМОДЕЛ (774295) страница 32017-06-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Лекция №8

Мы получили систему дифференциальных уравнений первого порядка:

(1)

(2)

(3)

Одно из этих уравнений необходимо отбросить и добавить уравнение нормировки:

Эта система уравнений позволяет описать переходный процесс во времени. Для этого нужно задать состояние системы в нулевой момент времени. Пусть

Изменить

Если наблюдать за системой достаточно долго, то можно говорить о некотором стационарном поведении системы. Решается эта система достаточно сложно. Стационарные характеристики такой системы получаются достаточно легко: для n<¥ этот предел всегда существует, если же n®¥, то предел не всегда существует. Пусть , тогда взяв предел от левой и правой части каждого уравнения системы получим:

Следовательно:

(1*)

(2*)

(3*)

Решим получившуюся систему уравнений. Из (3*) => . Решаем (1*) и (3*) при i=1:

Отсюда следует:

ДЗ. Пусть l=m. Чему равняется вероятность пребывания в том либо в другом состоянии ? Чему равно среднее время выполнения команды этой системой.

Пусть n=¥. Чему равны Рi при 1) l=m 2) l<m 3) l>m ? Чему равно среднее число команд в системе при n<¥ ?

Вложенные цепи Маркова.

Произвольная функция распределения.

Время одного из устройств описывается произвольной функцией распределения ( например ОП ), а время другого - экспоненциальным законом (ЦП). Если наблюдать за системой в любой момент времени t, то время выборки команды из ОП зависит от того, сколько она этим уже занималась. Существует прием, который позволяет решать такие системы, который заключается в том, что мы наблюдаем за системой не в любой малый интервал времени (Dt), а в «специальный». В качестве «специального» будем считать время, непосредственно перед появлением команды из ОП. Для описания системы введем вероятность Рi - вероятность того, что в БП+ЦП находиться i команд в момент времени перед появлением очередной из ОП и qi - вероятность того, что за время выборки одной команды ОП ЦП выполнит ровно i команд. Следовательно поведение системы может быть описано с помощью матрицы переходных вероятностей.

Номер столбца - состояние системы после завершения работы ОП и номер строки - состояние системы до появления команды из ОП. Предположим система находится в состоянии 0. Из этого состояния можно попасть только в состояние 0 или 1 с вероятностями 1-q0 и q0 соответственно. Если система находиться в состоянии 1, то из него она может попасть в состояние или 0, или 1 или 2 с вероятностями 1-q0-q1 и q1 и q0 соответственно и т.д.

При i=n+1 команда, которая должна быть считана из ОП не может поступить в БП, следовательно происходит блокировка работы ОП, при этом сама команда останется в ОП. После выполнения одной команды ЦП, система перейдет в состояние n, следовательно к таблице надо приписать еще одну строку:

Время блокировки равно времени выполнения, которое осталось для обслуживания команды в ЦП. Время пребывания системы в i-ом (i=0,1,2,...,n) равно времени выполнения одной команды ОП. Время пребывания системы в состоянии n+1 равно времени выполнения одной команды ОП плюс одной команды в ЦП.

Среднее время выполнения одной команды системой:

, где ТОР - среднее время выборки одной команды ОП, а 1/m - среднее время выполнения одной команды в ЦП.

Необходимо определить Рn+1, если qi известны. Для этого решим систему:

В этой системе одно уравнение линейно зависимо, следовательно надо отбросить любое уравнение и добавить уравнение нормировки.

Лекция №9.

Необходимо вычислить qi. Время выборки команды из ОП является случайной величиной, подчиняющейся произвольной функции распределения F(t). Пусть время выборки одной команды равно t. Разобьем это время на m одинаковых интервалов по Dt (Dt*m=t). Вероятность того, что за время Dt будет выполнена ровно одна команда в условиях экспоненциального закона распределения, равна: . Вероятность того, что за время t выполнится ровно i команд, равна:

Экспоненциальный закон распределения

для случая «нелинейной» программы.

Рассмотрим команду условного перехода (УП), результатом ее выполнения может быть либо выполнение команды с меткой, указанной в команде УП, либо выполнение следующей (по написанию) команды за командой УП. Так как же быть в данной ситуации? Пусть мы в БП заносим следующие команды за командой УП, тогда только после выполнения команды УП будет ясно угадано направление или нет, если не угадано, то необходимо аннулировать все команды, которые были занесены в БП, и изменить АО. Опишем эту модель математически: любая команда, которая выполняется в ЦП, является с некоторой вероятностью командой перехода, а с дополнительной вероятностью - командой следования. Если в настоящее время выполняется команда условного перехода, то с некоторой вероятностью она не меняет порядок выполнения команд и с дополнительной - меняет, следовательно вероятность того, что надо будет уничтожать команды, находящиеся в БП, после выполнения одной из команд равна произведению вероятности того, что текущая команда является командой условного перехода, и вероятности того, что она изменит порядок выполнения команд. Обозначим ее через n.

Для стационарного случая:

ДЗ. Рn+2(t)-?

Модель конвеерной обработки.


Средняя задержка команды на входе равна средней задержке команды на входе. Среднюю задержку (латентность) мы находим из графа переходов конвейера. Найдем нижнюю (Lmin) и верхнюю (Lmax) границу средней латентности (L).

Теорема: Lmin£L£Lmax, где Lmax - число единиц в начальном векторе столкновений, а Lmin находится из таблицы занятости - подсчитывается число меток в каждой строке и выбирается максимальное число.

Доказательство:

  1. Lmin£L. Пусть L - средняя латентность, тогда r=1/L - темп поступления или выдачи команд (количество инициаций). Введем кi - коэффициент использования i ступени. Пусть di-число меток в i-ой строке. Оно характеризует, как использовать i-ый сегмент. будем считать, что это неравенство действует для любого числа i, т.е. , где

  2. L£Lmax. Докажем это утверждения для случая, когда граф состояний представляет собой простой, замкнутый цикл (простой цикл - это цикл в котором любое из состояний не повторяется). Докажем, что для такого цикла (жадная стратегия) Lmax = числу единиц в начальном векторе столкновения. Рассмотрим модифицированный граф (только инициации). Обозначим за L1 задержку при переходе от S1 к S2. L1 - число единиц до первого нуля. В каждом состоянии существует свой вектор столкновения (Si). Обозначим за L1 задержку при переходе от S1 к S2. L1 - число единиц до первого нуля. S2 получается путем сдвига S1 на L1 позиций и прибавлением к нему начального вектора столкновений. Пусть xi - число единиц в векторе столкновения, отвечающему i-ому состоянию. х - число единиц в начальном векторе столкновений.

Замкнем круг

Что и требовалось доказать.

Характеристики

Тип файла
Документ
Размер
848,5 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6536
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее