МОДЕЛ (774295), страница 2

Файл №774295 МОДЕЛ (Лекции) 2 страницаМОДЕЛ (774295) страница 22017-06-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Пусть имеется n блоков в БП. Введем независимую модель. Она задается вероятностью ( ) обращения к i-ому блоку. Зависимая (марковская) модель задается - вероятность того, что предыдущее обращение было к i-ому блоку, а текущее к j-ому. Такое задание адресной трассы является приближенным. Истинная адресная трасса задается вероятностью, зависящей от всех предыдущих обращений.

Алгоритм замещения LRU.

Пусть БП имеет чисто ассоциативное отображение, следовательно имеется V=S мест. Для того чтобы описать состояние БП типа кэш необходимо использовать вектор длиной S, и элементы этого вектора есть номера блоков, которые находятся в кэш. Пусть блоки в векторе располагаются по принципу: слева - самый «молодой», а справа - самый «старый».

Например пусть для S=4 вектор будет 5,3,7,8. Тогда самый «молодой» будет блок с номером 5, а самый «старый» - 8.

- вероятность того, что вектор, описывающий состояние БП, будет

Пусть S=2, n=3. Построим граф переходных вероятностей, у которого число состояний - это число размещений n по S.



ДЗ. Достроить граф.

Найдем вероятность для этого нужно рассмотреть дуги, входящие в 1,2, и расписать каждое обращение-состояние.

А вероятность промаха будет:

В общем случае

(*)

ДЗ. S=3, n=6. Найти .

Мы имеем систему уравнений типа (*), но одно из них линейно зависимо. Его отбросим и добавим условие нормировки :

Выразим из системы все и подставим в выражение вероятности промаха:

Двоичное дерево.

Пусть n-произвольное, S=8.

ДЗ. 1) S=8,n=12. -?

2) Построить граф переходов для а) равновероятного алгоритма замещения;

б) алгоритма замещения FIFO.

Лекция №5.

Опережающая обработка информации.


Имеется тракт ОП-ЦП. ЦП вырабатывает адрес обращения, по которому происходит считывание команды. Во время считывания работает ОП, а ЦП простаивает. Пусть команда будет с непосредственной адресацией, следовательно во время ее выполнения в ЦП ОП будет простаивать. Производительность была бы выше, если бы ЦП постоянно выполняла бы команды, для этого нужно при выполнении очередной команды прочитать следующую, которую мы поместим в специальный буфер команд. Естественно, когда команда поступает из БП в ЦП, она затирается в БП. БП служит согласующим звеном между ОП и ЦП. Если время выполнения одной команды в ЦП меньше либо равна времени выборки команды из ОП, тогда БП не нужна. Но в действительности эти времена не постоянны.

Пусть время выполнения одной команды в ЦП изменяется от minTоп до maxTоп , время выборки команды из ОП лежит в диапазоне от minTцп до maxTцп . Для простоты будем считать, что передача информации из ОП в ЦП через БП происходит за нулевое время. И емкость буфера равна n.

Определим Топ и Тцп как

ì t1 c вероятностью p1

Топ = ít2 c вероятностью p2 (*)

ê....................................

îtk c вероятностью pk

ìt1 c вероятностью q1

Тцп = ít2 c вероятностью q2 (**)

ê....................................

îtk c вероятностью qk

Нас интересует производительность системы, то есть появление команд на выходе.

Пусть S - среднее время выполнение команды этой системой.

цп = - среднее время выполнения одной команды в ЦП. оп = - среднее время выборки одной команды из ОП. Рцп - вероятность простоя ЦП. Рцп - вероятность простоя ОП. Тогда .

Так как БП имеет ограниченную емкость, то если в момент поступления команды из ОП в БП, последняя полностью заполнена, то возникает проблема. Существует два решения этой проблемы: 1) команда теряется и будет происходит считывание с тем же адресом обращения до тех пор пока ЦП не обработает очередную команду и следующая команда поступит на обработку из БП. 2) Считанная команда остается на внутренних регистрах ОП и при этом происходит блокировка работы памяти. Будем считать, что у нас вторая дисциплина.

Рассмотрим тракт ОП-БП-ЦП, в котором время работы устройств подчинены различным законам распределения.

Дискретное распределение.


Определим состояние системы тремя параметрами U1U2U3, где U1 - указывает сколько времени осталось до завершения считывания команды из ОП; U2 - количество команд в буфере; U3 - указывает сколько времени осталось до завершения выполнения команды в процессоре.

Построим граф переходов данной системы.

Граф переходов содержит 6(n+1) состояний. Найдем - вероятность пребывания в состоянии . Для этого составим систему уравнений. Уравнение для некоторой вершины графа в левой части содержат , а в правой части - сумму произведений пометок дуг, входящих в выбранную вершину, на вероятности с пометками вершин, из которых эти дуги исходят.

ДЗ. Выписать все уравнения и определить вероятности простоя как ЦП, так и ОП.

Лекция №6.

Геометрическое распределение.

Системы (*) и (**) (см. прошлую лекцию) определяют функцию распределения времени выполнения команды в устройстве. В этом случае граф переходов будет очень сложным и определить в явном виде вероятности простоя сложно. Если мы зададим функцию распределения более упрощенно, то мы продвинемся в решении задачи. В связи с выше сказанным введем для описания времени выполнения команды в устройстве геометрический закон распределения.

Геометрическое распределение характеризуется двумя параметрами периодом (t) и вероятностью (p) повторения данного периода.

Посмотрим, как геометрическое распределение вводится для нашего случая: с вероятностью 1-p время выполнения команды равно t; с вероятностью (1-p)p время выполнения равно 2t; и т.д. с вероятностью (1-p)pi-1 время выполнения команды равно it. Таким образом в конце любого периода с вероятностью p команда продолжает выполнятся, а с дополнительной вероятностью (1-p) закончит свое выполнение.

Пример.

Определим состояние системы тремя параметрами U1U2U3, где U1 - указывает сколько времени осталось до завершения считывания команды из ОП; U2 - количество команд в буфере; U3 - показывает выполняется (1) или не выполняется (0) команда в ЦП.

Построим граф переходов данной системы.


Составим систему уравнений

В данной системе одно уравнение линейно зависимо, следовательно надо отбросить любое уравнение и добавить уравнение нормировки. Решается эта система любым из известных способов.

Найдем цп

Лекция №7.

Экспоненциальное распределение.

Экспоненциальное распределение является непрерывным распределением и является приближением геометрического распределения, т.к. при стремлении такта к 0 геометрическое распределение стремиться к экспоненциальному.

Определение: - вероятность того, что выполнение команды завершится к моменту времени t.

Для экспоненциального закона распределения .




Дополнении к функции распределения: - вероятность того, что выполнении команды не закончиться к моменту t.

Плотность вероятности:

ДЗ. Просмотреть свойства экспоненциального закона распределения. Математическое ожидание, дисперсия, первый и второй моменты.

Рассмотрим такую модель:


Поскольку время выполнения команды не зависит от того сколько данная команда выполнялась до этого нет необходимости вводить параметр, который будет содержать информацию о том сколько времени уже выполняется команда в процессоре, или в памяти, или одновременно и там и там, следовательно достаточно указать сколько находиться команд в системе (от 0 до n+1). Рассмотрим состоянии системы в некоторый момент времени t. Введем Рi(t) - вероятность того, что в момент наблюдения t в системе находится ровно i команд. При i=0,1,...,n+1 ОП не может быть заблокировано. Введем n+2 состояние и будем считать, что в этом состоянии ОП заблокировано.

Найдем Рi(t). Для этого рассмотрим малый интервал времени Dt и пусть в момент t+Dt система находиться в состоянии i. Найдем вероятность Pi(t+Dt) для всех значениях i. В момент времени t система могла находиться в любом состоянии. Посмотрим как можно из состояния системы в момент времени t попасть в состояние i в момент времени t+Dt.

  1. 0<i<n+2

вероятность того, что ни ОП, ни ЦП не завершит обработку команды или оба устройства выполнят одно и тоже число команд.

Определим вероятность того, что за Dt ни ОП, ни ЦП не завершит обработку команды:

ДЗ. Разложение ех.

Символ О(Dt) означает величины, для которых справедливо O(Dt )/ Dt ®0 при Dt®¥. Вероятность того, что за Dt устройствами будет выполнено ровно по к команд равняется О(Dt).

Действительно: .

Поэтому:

+ вероятность того, что за время Dt 1) ЦП выполнит 1 команду, а ОП - 0 команд, либо 2) ЦП выполнит на 1 команду больше чем ОП.

Определим вероятность первого события: .

Вероятность второго события равна О(Dt). Следовательно:

+

вероятность того, что 1) ЦП выполнит 2 команды, а ОП ни одной, либо 2) ЦП выполнит на 2 команды больше, чем в ОП.

Определим вероятность первого события: .

Вероятность второго события равна О(Dt). Отсюда вероятность попадания в состояние i из состояния i+2 равна О(Dt), аналогично и из состояния i-2. Следовательно и из состояний i±3, i±4,...,i±k вероятность попадания в состояние i равна О(Dt).

Мы получили формулу полной вероятности того, что система окажется в момент времени t+Dt в состоянии i (0<i<n+2):

+

( возьмем предел каждой части равенства при Dt®¥)

Характеристики

Тип файла
Документ
Размер
848,5 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6536
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее