150521 (766868), страница 2

Файл №766868 150521 (Основы безвихревой электродинамики. Потенциальное магнитное поле) 2 страница150521 (766868) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Его разрешение начнём с первого естественного утверждения о необходимости создания другого теоретического описания, адекватного центрально-симметричной магнитостатике.

Вторым пунктом теоретически обоснованно утверждается, что, вследствие сохранения магнитной энергии (следовательно – и взаимодействующих свойств поля), в новом теоретическом описании для характеристик локальных плотностей энергий сохраняются модули, векторы которых утратили свойство направленности. Эти модули образуют неоднородное скалярное поле.

Третий пункт является центральным в разрешении противоречия. Полагается, что градиент радиально ориентированной неоднородности скалярного поля модулей взаимно скомпенсировавшихся векторов магнитного потенциала (оно линейно зависит от расстояния до токового источника) описывает новые радиально ориентированные векторы магнитной напряжённости

. (1)

Последним пунктом итогово констатируется следующее понимание противоречия и его разрешения.

В условиях запрета принципом суперпозиции на образование центрально-симметричными противотоками циркуляционного свойства общего магнитного поля взамен, в меру сохраняющейся магнитной энергии, неизбежно образуется другое известное полевое свойство – потенциальное.

Нуль-векторная полевая ситуация свидетельствует не о взаимной компенсации накладывающихся магнитных полей токовых зарядов, что нарушало бы принцип сохранения энергии, а лишь исходных циркуляционных свойств.

Опытная регистрация эффекта стационарного потенциального магнитного поля. Стационарное потенциальное магнитное поле не взаимодействует силовым образом с замкнутыми токами, с постоянными магнитами.

Для его обнаружения использовался магнито-термический эффект, аналогичный известному охлаждению электропроводника циркуляционным магнитным полем.

Уменьшение температуры электропроводника объясняется уменьшением энтропии системы заряженных частиц в нём в связи с некоторым упорядочением их движения магнитным полем. Потенциальное магнитное поле, в отличие от циркуляционного, спо

собно изменять не только траекторную, но и скоростную картину движения заряженных частиц.

В качестве охлаждаемого тела в опытах использовался полупроводниковый. кристалл стабилитрона. Наличие у него сильной температурно-омической связи (200 кОм/град. в обратном направлении в интервале 0,8...1,9 мОм) позволяло фиксировать магнито-термический эффект (МТЭ) по регистрируемому цифровым омметром увеличению омического сопротивления стабилитрона.

В качестве дипольного источника потенциального магнитного поля применялись противонаправленные токи в паре рядом расположенных в одной плоскости прямоугольных многовитковых ( n = 300) рамок с стационарным током (i = 0,55 А в каждой).

На рисунках 3,4 показаны схемы опытов.

R (МТЭ)

(НДТ)

- i

I II III

Рис.3

R

(НДТ)

- i

I II III

Рис.4

Стабилитрон размещался в латунной экранирующей втулке. С целью разделения во времени магнитного охлаждения кристалла стабилитрона и его нагрева джоулевым теплом (НДТ) термозащитный кожух выполнен из алебастра и имеет массу, равную 0,5 кг.

Свободно пропуская магнитное поле, он в значительной мере аккумулирует в себе первоначальный слабый поток джоулева тепла, задерживая на некоторое время его влияние на стабилитрон.

В начале каждого опыта, в отсутствии исследуемого поля, оценивалась теплообменная ситуация между стабилитроном и окружающим пространством (зона I графиков).

Горизонтальная ломанная линия на первом участке графика указывает на неизменность во времени температуры стабилитрона.

В зоне II подъём ломанной линии графика над горизонтальной средней указывает на увеличение омического сопротивления стабилитрона под воздействием магнитного охлаждения и этот факт является опытным доказательством образования центрально-

симметричными токами потенциального магнитного поля. Иного объяснения наблюдаемому факту автор не находит.

В ряде опытов экранирующая втулка с стабилитроном размещалась внутри толстостенной стальной втулки (d = 1, 4 см, D = 3, 2 см., ℓ = 6,5 см.). Однако проявление магнито-термического эффекта по-прежнему имело место, что подтверждает естественное

предположение об отсутствии взаимодействия потенциального магнитного поля с спиновыми магнитными моментами ферромагнитного материала. Второй опытный факт является весомым дополнением к искомому доказательству.

В зоне III проявлялось преимущественное влияние джоулева тепла, образуемого токами в рамках. Ломанная линия графика уходит вниз вследствие нагревания экранирующей втулки и стабилитрона тепловым потоком, преодолевшим тепловую защиту.

В экспериментах с однонаправленными стационарными токами в паре рамок (Рис.4) магнитное охлаждение заметным образом не проявлялось.

Опытная регистрация эффекта переменного потенциального магнитного поля.

Из математической модели безвихревой электродинамики [ 2 ] имеем следующую формулу для вычисления ЭДС, образуемой в проводнике посредством бесциркуляционного магнитного поля

ε , (2)

которая упрощается в приближении однородности поля

ε = -- d/dt ℓ² (3)

По сравнению с вихревой электродинамикой в (3) вместо площади поверхности отображается квадрат протяжённости проводника.

Мощность потерь электромагнитной энергии поперечной ЭМВ в проводнике пропорциональна площади его поверхности, ортогональной вектору потока плотности электромагнитной энергии

N1 = 0,5 ZВ ∫ Н²df, (4)

где ZВ описывает волновое сопротивление проводника.

Для случая безвихревого электромагнитного поля площадь поверхности заменяется квадратом длины проводника, ориентированного вдоль вектора потока плотности электромагнитной энергии (вдоль возвратно-поступательных индукционных токов)

N2 = 0,5 ZВ ℓ ∫ Н²dℓ. (5)

В приближении однородности поля по длине проводника имеем

N2 = 0,5 ZВ (Н ℓ )² (6)

В качестве источника переменного магнитного поля применялась та же пара рамок с переменными токами в них (по 0,55 А в каждой, f = 50 гц.).

Стабилитрон использовался другой. Коэффициент термоомической связи был вдвое меньше (100 кОм/град.).

Если в первой серии опытов охлаждался непосредственно кристалл стабилитрона=а, то во второй нагреваемым элементом была алюминиевая экранирующая втулка ( D = 1см, d = 0,8см, ℓ = 3 см, m = 2,4 г).

Методика экспериментов заключалась в регистрации отрезка времени между моментами включения переменного тока и первым уменьшением показания цифрового омметра на одну цифру, что указывало на нагрев стабилитрона (и алюминиевой втулки) на 0,01º.

Такому изменению температуры алюминиевой втулки эквивалентно увеличение энергии её теплосодержания на

W = 4,187 с m Δ t (7)

W = 2, 1 10 ˉ ² ДЖ. (8)

Малая начальная мощность нагрева втулки на 0,01º позволяет использовать линейное приближение для определения времени достижения этой температуры

N = W/Δt (9)

В опытах с стационарными противонаправленными токами в паре рамок, когда имел место только нагрев джоулевым теплом, были получены отрезки времени в следующем интервале их разброса

Δ = (10,4…12,2) мин. (10)

Подставляя в (9) опытные результаты (10) получаем мощность нагрева втулки джо

улевым теплом

N1 = (2,56…3,39) 10ˉ5 ВТ. (11)

В опытах с переменными противонаправленными токами к установленной величине мощности нагрева втулки джоулевым теплом ожидалось добавление мощности нагрева возвратно-поступательными индукционными токами.

Полученное существенное уменьшение регистрируемых отрезков времени

Δ = (3,66…4,58) мин. (12)

подтвердило ожидание, что и явилось по мнению автора, опытным доказательством существования безвихревого вида электромагнитной индукции.

Подставляя в (9) результаты из (12) получаем суммарную мощность теплового нагрева втулки

N2 = (7,84…9,54) 10ˉ5 Вт. (13)

Для выявления составляющей мощности индукционного нагрева втулки использовалась формула

N3 = N2 - N1 (14)

N3 = ( 4,77…6,09) 10 ˉ5 ВТ. (15)

Теоретическое вычисление мощности индукционного нагрева с использованием (6) даёт результат

N3 = 6,5 10ˉ Вт.

Его удовлетворительное совпадение с (15) придаёт дополнительную уверенность автору в истинности сформулированных им логических выводов об образовании центрально-симметричными токами потенциального магнитного поля, в существовании безвихревых электродинамических явлений.

В опытах с однонаправленными переменными токами эффект дополнительного нагрева втулки заметным образом не проявлялся.

Во второй части статьи будет дана информация о сути продольных ЭМВ. Об опытном подтверждении автором их существования. Об устройствах для излучения. О трактовке светового диапозона продольных ЭМВ. Об идеях получения и регистрации продольных фотонов.

В третьей части будет изложена 4-мерная математическая модель безвихревой электродинамики и некоторые дополнительные суждения.

.

Литература.

1.Парселл Э. Электричество и магнетизм. М., Высшая школа.,!980г., стр. 191,192.

2. Кузнецов Ю. Н. Научный журнал русского физического общества, 1-6, 1995 г

Сведения об авторе.

Кузнецов Юрий Николаевич

контактный телефон 677-26-65

Характеристики

Тип файла
Документ
Размер
812,85 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее