108876 (765326), страница 3
Текст из файла (страница 3)
Поэтому, исходя из выше изложенного, позволю усомниться в двух сентенциях концепции Скулачёва:
1). Так ли уж очевидно, что для прогрессивной эволюции необходима программа самоликвидации отдельно взятой особи?
2). Действительно ли апоптоз, накопление повреждений молекулами мтДНК, ошибки в контроле клеточного цикла, нестабильность генома, укорочение теломер при митозе другие процессы клеточного старения укорачивают жизнь живых многоклеточных существ вообще и высших позвоночных в частности.
Своими примерами в своих же работах Скулачев фактически опровергает самого себя: - "Бамбук 15-20 лет может размножаться вегетативно и, казалось бы, быть бессмертным, но потом вдруг принимает решение перейти на половое размножение, появляются цветы, семена и буквально через несколько дней после созревания семян бамбук погибает."
Менее известный, но тоже характерный пример: мексиканская агава, прожив девять лет, на десятый цветет, дает плод и тут же засыхает. Но ведь другие же виды растений превосходно обходятся без подобных механизмов самоуничтожения?! Так может быть для прогрессивной эволюции необходима программа самоликвидации отдельно взятой особи только в некоторых случаях, что характерно только для определенного числа видов. А процессы клеточного старения идут параллельно и независимо от процессов организменного старения, практически не влияя друг на друга.
Для того чтобы получить ответы на эти непростые вопросы необходимо рассмотреть, а лучше опровергнуть ещё один незыблемый и общепринятый в наши дни постулат геронтологии о том что, старение и смерть появились на Земле одновременно с возникновением многоклеточных организмов.
Этот догмат так вошел в современную культуру, что его можно обнаружить не только в работах по геронтологии, но и в философских и даже художественных произведениях. Например: - "Лишь с многоклеточными в наш мир вошла смерть, с развитием нервной системы - боль, с сознанием - страх... с имуществом - заботы, а с моралью - сомнения". (Вернер Гитт. Творил ли Бог через эволюцию?) Свободный доступ!
Но старение и смерть категории неравнозначные. И смерти необязательно предшествует старение.
Необходимо обратить мысленный взор в те далекие времена, когда из продвинутых одноклеточных эукариот возникали первые многоклеточные организмы. Клетка из самодостаточного организма превращалась в часть сложной системы.
Да, в те времена, каждая клетка примитивного многоклеточного организма получала в наследство от одноклеточных предшественников программы клеточного старения и программу программируемой клеточной гибели. Но они были в состоянии уничтожить или состарить только ту или иную клетку организма, но не организм в целом.
Из подобных реликтов прошедших эпох в наши дни существует ряд таких бессмертных реликтов. Это гидра (актиния), некоторые виды медуз и еще ряд организмов. Прекрасный пример - пресноводная гидра - хищный полип величиной около двух сантиметров, который обитает в водоемах. Впервые на гидру как бессмертный организм указал французский биолог П. Бриан в конце 60-х годов 20го столетия. В оптимальных условиях гидра живет неограниченно долго, никак не меняясь, не старея. Иначе говоря, она - бессмертна. В чем же дело?
В верхней части тела гидры, чуть ниже щупалец, находится зона, где особенно много постоянно делящихся клеток. Отсюда новые клетки мигрируют к концам тела, где дифференцируются в покровные, нервные, стрекательные. Однако через некоторое время уже их вытесняют новые молодые клетки, приходящие из зоны интенсивной пролиферации. Этот процесс идёт бесконечно, и гидра живёт неограниченно долго, не проявляя признаков старения. Но при одном непременном условии: благоприятной внешней среде. Стоит случиться незначительному природному катаклизму - изменению температуры или состава воды - и деление клеток замедляется, гидра стареет и гибнет. Поэтому гидра бессмертна лишь потенциально. А точнее, сама по себе - как биологический объект - она абсолютно бессмертна, однако при взаимодействии с внешней средой её абсолютное бессмертие превращается в относительное.
Как видите, на заре эволюции природа создавала бессмертные организмы.
Вывод из этого примера может быть только один - в момент возникновения многоклеточности, первые многоклеточные организмы избавляются от программы самоуничтожения и получают как бы потенциальное бессмертие.
Не исключено, что это потенциальное бессмертие может быть также потенциально ограничено клеточными программами старения.
Представим себе смерть от старения такого лишенного, каких либо механизмов самоуничтожения организма в идеальных условиях. Данный организм получает возможность жить до тех пор, пока все его клетки не потеряют способность к существованию, в результате процессов клеточного старения. Но для живого существа это означает практически ничем не ограниченную продолжительность жизни. По крайней мере, в том временном континууме, с которым в человеческом мозгу связывается понятие беспредельное долголетие. Например, с долголетием секвойи гигантской Sequoia gigantea с продолжительностью жизни более чем 4 тыс. лет или старением клона малины или винограда. Старение подобных биологических объектов автор предлагает использовать обозначить термином "истинное старение".
Но если у такой бессмертной гидры усложнить морфологию и увеличить уровень метаболизма до максимально возможного для живых существ уровня, то не исключено, что мы будем наблюдать то, что мы наблюдаем у птиц. Автор полагает, что среди всего разнообразия живых существ, только у птиц, учитывая их фантастический уровень метаболизма, максимальная продолжительность жизни ограничена клеточными процессами старения, т.е. среди видов птиц мы можем наблюдать "истинное старение". Безусловно, это мнение пока не подтвержденное, но интуиция это также метод познания. В остальных же таксонах клеточное старение видимо не влияет (точнее, не успевает повлиять) на продолжительность жизни многоклеточного существа. Хотя нельзя исключать, что механизмы клеточного старения могут быть в том или ином эволюционном дизайне пусковым триггером, или биологическими часами отсчитывающими время жизни. В примере с гидрой клеточные механизмы старения начинают влиять на продолжительность жизни, когда организм гидры лишается возможности заменять отработавшие клеточные элементы. Но в природе существует много организмов, в дизайне которых существуют ткани из клеток ""одноразового пользования", т.е. постмитотичных.
Одним словом, постоянная молодость и, фактически, бессмертие не противоречат природе, встречаются в природе и являются возможными! Но если клеточные механизмы старения практически не ограничивают продолжительность жизни растений, гидры, и так называемых "нестареющих видов животных", то почему же они должны ограничивать её у нас, млекопитающих?
Академик Скулачёв в своей концепции феноптоза, цепь событий митоптоз - апоптоз - органоптоз предлагается дополнить еще одним этапом - запрограммированной смертью особи - феноптозом. Но имеет ли место подобная цепь событий? Я имею ряд сомнений о зависимости самоуничтожения многоклеточного организма от процессов апоптоза.
Напомню, что программируемая клеточная гибель (ПКС), или апоптоз - механизм, широко распространенный в различных царствах живого, включая прокариот. Эволюционно ПКС возникла у прокариот как механизм противовирусной защиты популяций и была закреплена у одноклеточных эукариот. Часто прокариоты в случае экстремальных ситуаций используют программируемую клеточную гибель для выживания популяции. Например, апоптоз у E. coli можно рассматривать как пример "бактериального альтруизма". В экстремальных условиях часть голодающих клеток лизируется, способствуя выживанию остальной части клеточной популяции (Adams and Cory, 1998; Gross et al., 1999).
В дальнейшем, с появлением многоклеточных организмов, механизм совершенствовался и был приспособлен, наряду с защитой от патогенов, для реализации важных жизненных функций - дифференцировки клеток и тканей при эмбриогенезе и постэмбриональном развитии, элиминирования клеток иммунной системы, невостребованных, состарившихся клеток либо клеток, подвергшихся воздействию мутагенных факторов. Таким образом, у многоклеточных организмов - животных, растений и грибов генетически заложенная программа гибели клеток не связана с его самоуничтожением.
Да, феномен программируемой смерти (ПКС) необходим для выживания одноклеточных организмов. Безусловно и то, что подобный механизм должен возникнуть в процессе эволюции и среди многоклеточных, но как выше показано в момент своего возникновения эти многоклеточные как бы лишаются механизма самоуничтожения. Эволюционно ПКС "приспосабливается" на совершенно другие цели. Поэтому многоклеточные организмы должны эволюционно как бы заново "изобрести" механизм собственного самоуничтожения. Исходя из того, что мы сегодня знаем, нельзя исключать, и то, что у многоклеточных организмов феноптоз может быть, реализован на совершенно ином уровне чем у одноклеточных, и с использованием совершенно иных механизмов.
Почему же тогда академик Скулачев утверждает, что именно апоптоз причина феноптоза? Ведь у многоклеточных апоптоз "занят" совершенно другими важными жизненными функциями. Никто не будет оспаривать тот факт, что разрегулирование процессов апоптоза в организме млекопитающих может вызывать смерть. Но ведь это сцена из совершенно иной пьесы (а из какой именно - об этом речь пойдёт ниже), и к возрастзависимому самоуничтожению это не имеет никакого отношения. Видимо это вопрос о надежности того или иного эволюционного дизайна в тех или иных условиях существования.
Видимо, также не может рассматриваться как инициальный субстрат старения или самоуничтожения указанный в работах Скулачёва феномен укорочение теломер благодаря подавлению активности теломеразы на ранних стадиях эмбриогенеза.
К достоинствам гипотезы маргинотомии Оловникова следует отнести возможность ее экспериментальной проверки. Достаточно измерить длину теломер в постмитотических клетках молодых и старых доноров (гипотеза предсказывает их укорочение), а также проверить, является ли, согласно предсказанием гипотезы, прекращение работы некоторых генов и гибель клеток причиной смерти организма. Непосредственное измерение теломерных участков показали, что у мыши они значительно длиннее, чем у человека, хотя продолжительность жизни последнего в 50 раз больше. Кроме того, хотя теломерные участки в клетках крови человека укорачиваются с возрастом, в мышечных клетках человека (Decary et al., 1997) и мыши такого не найдено. Нет укорочения теломер и при клональном старении одиночных клеток дрожжей (Finch and Tanzi 1997).
Принимая во внимание указанные соображение Потапенко и Акифьев (Потапенко и Акифьев, 2003) проанализировали известные по этому вопросу литературные источники и пришли к мнению, что теломеразная гипотеза имеет отдаленное отношение к сущности старения. Она может быть предложена в качестве одного из объяснений причины существование лимита на число делений соматических клеток (лимита Хейфлика). Но не больше.
Необходимо обратить внимание еще на один феномен. Траектория эволюции продолжительности жизни носит странный зигзагообразный характер: сначала возникли примитивные нестареющие одноклеточные существа, потом у них возникает программа самоуничтожения, затем почему-то их одноклеточные эукариотические потомки стали как бы стареющими, объединившись в многоклеточный организм они получают опять потенциальное бессмертие. Ну а потом их некоторые потомки стают опять стареющими, причем чрезвычайно короткоживущими, а в последующем происходило медленное увеличение долговечности (млекопитающие- яркий пример).
Дивны дела твои Господи, но логика в этих процессах всё же есть.
Автор берёт на себя смелость поставить с "головы на ноги" сентенцию Питера Медовара о том, что в дикой природе никто не доживает до старости, а значит, и не может от старости умереть, и поэтому невероятно, чтобы такой механизм был отобран в ходе эволюции. Ну а если доживают, или если в процессе эволюции возникают особо надежные живые организмы? Быть может дело в том, что потенциальное бессмертие особей того или иного вида не прекращает эволюцию, если их гибель от случайных причин имеет достаточно высокую степень. А если у конкретного вида степень гибели от случайных причин недостаточно высока, то этот вид обречен на вымирание или у него эволюционно возникают механизмы возрастзависимого самоуничтожения (как у бамбука с агавой). Описаны ли в литературе механизмы самоуничтожения? Безусловно, но на них при выдвижении тех или иных теорий старения не обращают должного внимания.
Как пример самого простого механизма самоуничтожения можно упомянуть поденку - взрослая особь не имеет ротового отверстия. Ну, чем не механизм самоуничтожения?
Из числа хорошо описанных в литературе механизмов самоуничтожения можно упомянуть так называемое старение млекопитающих. Хотя этот процесс и обозначается совершенно иными терминами. Речь идёт о элевационной теории старения В.М. Дильмана. (Дильман, 1958; Dilman, 1971; Dilman, 1981) Согласно этой теории, механизм старения начинает свою работу с постоянного возрастания порога чувствительности гипоталамуса к уровню гормонов в крови. В итоге возрастает концентрация циркулирующих гормонов. (по мнению других авторов изменяется) Как результат, возникают различные формы патологических состояний. Эти болезни ведут к старению и в конечном итоге к смерти.
Другими словами, в организме, есть большие биологические часы, которые отсчитают отпущенное ему время жизни от рождения, до смерти запуская в определенный момент деструктивные процессы которые принято называть старением. В основе элевационной теории старения Дильмана лежит постулат о том, что если стабильность внутренней среды организма есть условие его существования, то программируемое изменение уровня гомеостаза есть условие его развития (закон изменения гомеостаза). Т.е. возрастзависимый механизм ювенильного постнатального развития заключается в изменении порога уровня чувствительности гипоталамуса к регуляторным гомеостатическим сигналам. Но этот механизм по достижении организмом репродуктивного возраста переходит в патологическую фазу и его дальнейшее функционирование приводит к неблагоприятным изменениям уровня гомеостаза. Этот процесс и является причиной старения. Так как он со временем вызывает снижение чувствительности гипоталамуса к тормозному влиянию глюкозы, эстрогенов, кортикостероидов, сигнализирующих по принципу отрицательной обратной связи о состоянии трёх основных гомеостатических систем - энергетической, репродуктивной и адаптационной. Что в свою очередь вызывает рост уровня холестерина, инсулина и кортизола в крови, снижение толерантности к глюкозе. В наши дни признано, что именно этот процесс приводит к возрастному включению и выключению функции репродуктивной системы в женском организме, к возрастным изменениям в гипоталамо-гипофизарно-надпочечниковой системе, обеспечивающей тонический уровень глюкокортикоидных гормонов в крови, их циркадный ритм повышения секреции при стрессе, и, в конечном итоге, к развитию состояния, обозначенному как гиперадаптоз. Развивая и углубляя на протяжении почти 40 лет свою концепцию, В.М. Дильман пришёл к убеждению, что разрегулирование гомеостатических систем ведет к развитию характерных для старческого возраста заболеваний : - ожирения, диабета, атеросклероза, канкриофилии, депрессии, метаболической имуннодепрессии, гипертонии, гиперадаптоза, автоиммунных заболеваний и климакса, которые Дильман обозначил термином нормальные болезни старения. Фактически Дильман стал рассматривать старение как связанное с возрастом возникновение и развитие этих заболеваний и предложил механизм их возникновения. Кроме того, он отрицал возрастную норму и ввёл понятие идеальной нормы, как нормы уровня гомеостаза характерной для наиболее цветущего возраста, который для человека наступает в возрасте 20-25 лет.