12410 (761245), страница 5
Текст из файла (страница 5)
Следовательно, вторичная, третичная и четвертичная структуры белковых молекул кодируются и программируются уже другим молекулярным кодом – аминокислотным. В результате конформационных преобразований и процессинга макромолекула фермента (белка) формирует характерную трехмерную конформацию со своими стереохимическими кодами и, в связи с этим, приобретает свой информационно-кибернетический статус. Весь ход процессинга и адресной доставки фермента в соответствующий операционный блок осуществляется в виде отдельных операций манипуляторами устройства управления, точно в соответствии с кодовыми компонентами белка.
Каждый фермент или другой белок клетки по своим индивидуальным кодам адресации доставляется в свой операционный блок. В операционном блоке, точно в соответствии с функциональным адресным кодом и кодом каталитической операции фермент, действуя как молекулярный биологический автомат, выполняет определенный тип химической реакции. Процесс рецепции информации подлинного субстрата, осуществляемый активным центром фермента, вызывает конформационные изменения в фермент-субстратном комплексе, при которых кодовые химические группы фермента и молекулы субстрата занимают самое оптимальное положение для прохождения каталитической операции.
Важно отметить, что подключение объекта управления (молекулы субстрата), через кодовый стереохимический контакт комплементарного сопряжения, ведёт к индукции электронно-конформационного возбуждения фермент-субстратного комплекса. Присоединение подлинного субстрата сначала ведёт к переброске электронов и протонов между ферментом и молекулой субстрата, усилению электронной перестройки вдоль сопряженной системы связей, что соответственно приводит к возбуждению фермент-субстратного комплекса и, как итог, благодаря подвижным водородным связям, ведёт к динамическим конформационным сдвигам и срабатыванию “силового молекулярного привода” аппарата химического катализа фермента.
Эти механизмы обеспечивают ферменту не только химическую, но и динамическую реактивность и, как результат, – автоматический режим его работы. Возникшие конформационные изменения в фермент-субстратном комплексе сопровождаются разрывом или образованием химических связей субстрата, которые происходят с высвобождением или затратой энергии. В случае необходимости эти процессы поддерживаются химической энергией в форме АТФ. Быстрому протеканию ферментативной реакции способствует высокая химическая и динамическая реактивность фермента.
Высокая химическая реактивность обеспечивается режимом полифункционального катализа, когда на превращаемую химическую связь субстрата одновременно действует стереохимическая комбинация различных каталитически активных химических группировок активного центра (код операции) фермента. Интересным фактом здесь является то, что белковые молекулы стереохимическим способом решают сразу две задачи, – информационной коммуникации и полифункционального катализа.
Динамическая реактивность фермента, при взаимодействии фермента с субстратом, создаёт напряжение, то есть ориентирует и фиксирует взаимодействующие химические группы таким образом, что это создаёт механическую составляющую, которая снижает энергию активации и способствует эффективному прохождению реакции.
Можно считать, что, в рамках сделанных допущений, информационная модель описывает процесс управления химической реакции, ведущий к образованию продуктов реакции. Образование продуктов реакции сопровождается нарушением их физико-химического соответствия управляющим кодовым компонентам фермента, а это приводит к возврату фермента в исходное состояние. Фермент, как взведённая пружина, возвращаясь в исходное состояние, способствует выбросу продуктов реакции из активного центра. Если фермент является аллостерическим, то на него могут воздействовать регуляторные молекулы обратных связей, влияя, таким образом, на ход химической реакции. Так происходит реализация управляющей генетической информации [2].
Заметим также, что клеточная система сразу же получает информацию о ходе управляемых процессов в виде стереохимических кодов продуктов реакции, которые становятся субстратами для других ферментов или выступают в роли молекул обратной связи. Сигнальная (осведомляющая) информация субстратов служит для информирования управляющей системы о состоянии управляемых объектов, о ходе реакций, об эффективности протекающих процессов и т. д. Отличительной особенностью белков клетки является их способность адекватно и сходным образом отвечать на довольно слабые информационные воздействия, достаточно мощными обратимыми конформационными изменениями. В этом, видимо, и заключается основа и сущность их биологической активности.
Способность белка индуцировано возбуждаться и адекватно отвечать на сигнальную информацию изменением своей конформации является специфической особенностью. Конформация фермента меняется при взаимодействии его с субстратом, молекула гемоглобина – при соединении с кислородом, конформационные изменения обеспечивают функционирование сократительных белков и т. д.
Способность ферментов и других белков клетки автоматически отвечать на слабые информационные воздействия, довольно мощными обратимыми конформационными изменениями, используется клеткой практически для всех биологических функций. А этап фермент-субстратного взаимодействия является заключительным фрагментом биокибернетического управления. По всей вероятности, это и есть те, пока недостающие и разыскиваемые фрагменты информационного управления, указывающие на единство процессов управления и информации в каждой живой клетке! Известно также, что некоторые ферменты и белки программно объединяются между собой или с молекулами РНК в агрегатированные автоматы и становятся способными к выполнению сложнейших биологических функций. К молекулярным агрегатам такого рода можно отнести ДНК и РНК-полимеразы, рибосомы, АТФ-синтетазу и т. д.
Здесь мы рассмотрели работу управляющей подсистемы клетки, действие которой непосредственно связано с программной информацией генетической памяти. Очевидно, что нет никаких причин сомневаться в информационной основе рассмотренных выше процессов управления. Теперь нам важно понять сущность управляемых клеточных процессов и убедиться в том, что, несмотря на химическую основу, они также носят информационный характер!
9. Информационная основа управляемых процессов.
Одна из отличительных особенностей клеточной системы управления заключается в том, что она информационно взаимодействует с молекулярными объектами управления. Вспомним, – все объекты управления (субстраты), точно так же, как и сама система управления, состоят не только из типовых био-логических элементов (и химических знаков), но и построены по одним и тем же типовым закономерностям. Этот факт позволяет живой клетке не только осуществлять управление превращениями субстратов (или пищевых продуктов), но и осуществлять самоуправление своими же биологическими компонентами.
Очевидно, что все биохимические элементы, а значит и биомолекулы клетки (в том числе и молекулы субстратов), обладают разными типовыми функциональными и боковыми группами, атомами и их химическими связями, которые свободно узнаются и тестируются соответствующими ферментами. Боковые и функциональные атомные группы, атомы и их химические связи – это и есть те опознавательные знаки, благодаря которым управляющая система легко может идентифицировать любой био-логический элемент клетки. Поэтому в живой клетке, кроме молекулярного алфавита различных элементов, существует ещё и свой химический алфавит типовых атомных групп и атомов, манипулируя которыми управляющая система может осуществлять их движение от одного элемента к другому (а, значит, и между молекулами). Поэтому, циркуляция атомных групп и атомов определяет свою субмолекулярную форму движения информации, которая в живой клетке организована в виде управляемых ступенчатых химических реакций! [6].
Таким образом, информационные процессы в живой клетке практически затрагивают не только молекулярный уровень организации, но и, что удивительно, субмолекулярный – атомный! Однако следует отметить, – если целостные элементы в основном служат для организации самих аппаратных устройств и управляющих процессов клетки, то отдельные химические знаки используются не только в качестве информационных сигналов для организации управляемых химических процессов, но применяются и для построения или реорганизации (перекодировки) самих био-логических элементов. В связи с этим, управляющая система клетки, в целом, способна манипулировать различными химическими буквами, символами и знаками, которым предписан определённый биологический и информационный смысл [3].
Очевидно, что все управляемые процессы представляют собой ничто иное, как те ступенчатые химические реакции, которые определяют пути клеточного метаболизма. Только, в ступенчатых химических реакциях различные ферменты способны манипулировать отдельными химическими знаками био-логических элементов. Эта способность управляющей системы основана на том, что при фермент-субстратных взаимодействиях, адресные и операционные коды определенных ферментов соответствуют тем или иным боковым или функциональным атомным группам или атомам и их химическим связям.
Значит, молекулярные коды соответствий, и средства их передачи существуют не только для важнейших систем био-логических элементов – нуклеотидов и аминокислот. Они существуют для любых мономеров и их химических знаков. А одинаковые кодовые комбинации элементов и их боковых атомных групп в активных центрах ферментов всегда воспринимаются конкретной клеткой как одна и та же (эквивалентная) информация, реализуемая в одних и тех же действиях. Очевидно, что для информационного манипулирования различными химическими буквами, символами и знаками живая клетка применяет свои специфические химические или стереохимические молекулярные коды. Специалистам лишь следует научиться их правильно выявлять и идентифицировать.
Кодовые компоненты активных центров ферментов могут специфически (стереохимически и комплементарно) взаимодействовать с доступными для них атомными группами и химическими связями биомолекул (субстратов). Поэтому все субстраты для своих ферментов являются сигнальными молекулами, несущими осведомляющую стереохимическую информацию! На этом основана молекулярная биохимическая логика информационных взаимодействий между ферментами и их субстратами.
В ходе каждой химической реакции, которая управляется своим ферментом, обычно происходит лишь небольшое химическое изменение, например, удаление, перенос или присоединение какого-нибудь атома, боковой или функциональной группы или отдельного биохимического элемента. Иными словами, часть выходного звена управляющего аппарата должна координировать в пространстве и во времени совокупность огромного числа ступенчатых реакций: окисления, восстановления, расщепления, межмолекулярного переноса атомных групп и т. д. Поэтому в качестве объектов управления в клетке могут выступать как отдельные био-логические элементы (нуклеотиды, аминокислоты, простые сахара и жирные кислоты), так и различные биологические молекулы, состоящие из этих элементов, – то есть многочисленные молекулы субстратов.
Каждый объект управления (субстрат) является носителем в “законсервированном” (статическом) виде определённой структурной биологической информации и химической энергии, накопленной в его химических связях. Поэтому все органические питательные вещества, поступающие в живую систему, представляют собой молекулярные информационно-энергетические субстраты, которые поставляют в клетку необходимые структурные, информационные и энергетические компоненты. И всё это клетка получает в результате информационной переработки субстратов (данных). Благодаря стереохимической форме представления информации, сигнальными элементами субстратов для управляющей системы являются лишь те элементы, к которым она в данный момент имеет доступ. Другие же сигнальные элементы (буквы, символы или знаки) временно маскируются в трёхмерной структуре субстрата.
Поэтому информационное преобразование молекулы субстрата, при обработке её различными ферментами, осуществляется последовательно, шаг за шагом (программно), в виде отдельных единичных каталитических операций. Таким образом, все биологические процессы управления и химического превращения веществ в клетке сопряжены с процессами преобразования, как управляющей, так и осведомляющей молекулярной информации. Поскольку каждый фермент способен управлять лишь какую-то одну цепь реакций данного соединения, не влияя на другие возможные реакции, то в отдельно взятом компартменте (операционном блоке) одновременно может протекать множество различных химических реакций.
В связи с этим, можно сделать заключение о том, что других специальных механизмов синхронизирующих работу белков и ферментов, по-видимому, не требуется (кроме сигналов обратных связей или изменения физических и химических факторов микросреды).
10. Операционные блоки ступенчатых процессов.
Ступенчатые биохимические процессы – это деградация или синтез различных простых органических соединений. Это именно тот, программно управляемый биохимический “генератор жизни”, который осуществляет вечное движение органического вещества и энергии и поддерживает баланс разрушительных и созидательных процессов в живой клетке. Очевидно, что управляющая система клетки, по свому назначению, является той информационной системой, которая служит для управления молекулярными биологическими объектами (субстратами). На структурной схеме показаны операционные блоки катаболических и амфиболических (центральных) путей. Важнейшие из них – гликолиз, b -окисление жирных кислот, цикл трикарбоновых кислот и пути распада аминокислот обеспечивают поступление электронов и протонов в электрон-транспортную систему и образование углеродсодержащих соединений (около десяти веществ).
Как видно из структурной схемы, каждый операционный блок содержит свою управляющую и управляемую части. Поступление в блок молекулярных автоматов или манипуляторов – выходного звена управления биопроцессоров, показано жирными черными стрелками. Управляемые потоки вещества, тождественно представляющие потоки сигнальной (осведомляющей) информации субстратов, показаны в виде серых стрелок. Каждый операционный блок предназначен для переработки своей субстратной информации, или, с точки зрения биохимии, для осуществления определенных биохимических реакций. К примеру, блок амфиболических путей обеспечивает не только поступление в блок синтеза элементной базы соответствующих углеродсодержащих соединений, но и осуществляет энергообеспечение живой клетки в форме АТФ. “Благодаря разной локализации ферментов катаболизма и анаболизма эти противоположные метаболические процессы протекают в клетке одновременно. Их связывают центральные, или амфиболические процессы. Примером служит цикл трикарбоновых кислот. Тесная связь между анаболизмом и катаболизмом проявляется на трех уровнях:
1) на уровне источников углерода: продукты катаболизма могут быть исходными субстратами анаболических реакций;