108906 (756073), страница 2
Текст из файла (страница 2)
Цветовой график Международной комиссии по освещению. В центре - область белого цвета, пересекаемая дугой, соответствующей цвету черного тела при разных температурах. Кружками отмечены цветовые координаты разных светодиодов.
В ходе разработок светодиодов за последние десятилетия перечисленные выше сложные условия выполнялись последовательно для разных длин волн, и вот с какими результатами. Красные диоды на основе твердых растворов арсенидов галлия-алюминия AlxGa1-xAs достигли внешнего квантового выхода излучения he более 15%. Диоды из фосфида галлия GaP, светящиеся желтовато-зеленым цветом, имеют he ~ 0.1%, но близость спектра излучения к максимуму чувствительности глаза (l= 555 нм) обеспечила им в 70-90-х годах широкое применение. КПД промышленных образцов красных, оранжево-желтых и желто-зеленых светодиодов на основе гетероструктур из твердых растворов InyAlxGa1–x–yP были доведены к концу 90-х годов до he = 25-55% [5].
Светодиоды в отличие от лазеров - источники спонтанного излучения, их спектральные “линии” имеют заметную ширину: на уровне половины максимальной интенсивности она составляет 20-50 нм, что соответствует средней тепловой энергии электронов.
А вот эффективные светодиоды для зеленовато-голубой, голубой, синей и фиолетовой частей спектра были созданы только в 90-е годы. Сделать их можно на основе полупроводников с большой шириной запрещенной зоны: карбида кремния SiC, соединений группы AIIBVI, нитридов группы AIIIBV. У излучателей на основе ZnSe (AIIBVI) большой квантовый выход, но они недолговечны и имеют большое электрическое сопротивление. У карбид-кремниевых излучателей очень мал КПД, так как SiC - непрямозонный полупроводник.
В последние годы был сделан настоящий прорыв в разработках голубых и зеленых светодиодов. В приборах на основе нитрида галлия и его твердых растворов GaN, InxGa1–xN, AlxGa1–xN внешний квантовый выход увеличен до he = 9-16 % [8-10]. Светоотдача диодных излучателей из разных материалов для всех основных цветов превысила светоотдачу ламп накаливания. Диоды стали приборами и оптоэлектроники, и светотехники.
Замечательный нитрид
Нитрид галлия GaN, представитель группыAIIIBV, в отличие от кубических кристаллов GaAs, InP, AlAs кристаллизуется в гексагональной решетке типа вюрцита (постоянные решетки a = 3.18 А, с = 5.18 А) и имеет ширину запрещенной зоны Eg = 3.5 эВ. Выращивание монокристаллов этого полупроводника непростая задача, так как температура плавления GaN ~2000°С, а равновесное давление паров азота должно быть 40 атм.
GaN - прямозонный полупроводник; нелегированные кристаллы GaN имеют большую концентрацию доноров, обусловливающих проводимость n-типа и концентрацию электронов n = 1018-1019 см–3 [11].
Кристаллы аналогичных соединений - нитридов алюминия и индия AlN и InN - также гексагональные с сильно различающимися постоянными решеток (a = 3.11, 3.54А и с = 4.98, 5.70А ); это - прямозонные полупроводники с Eg = 6.5 и 1.8 эВ соответственно. Бинарные соединения допускают образование тройных твердых растворов Ga1–xInxN, Ga1–xAlxN. В ряду Ga1–xInxN можно так подобрать параметр х, что энергия Eg будет отвечать фиолетовой, голубой или зеленой области спектра.
Еще в 70-х годах группа Ж. Панкова из лаборатории компании IBM создала фиолетовые и голубые диоды на основе эпитаксиальных пленок GaN. Квантовый выход был достаточен для практики (доли %), но срок их службы был ограничен. В р-области p-n перехода концентрация дырок была мала, и сопротивление диодов оказалось слишком большим, они довольно быстро перегревались и выходили из строя.
В начале 80-х годов Г.В.Сапарин и М.В.Чукичев в Московском государственном университете им.М.В.Ломоносова обнаружили, что после действия электронного пучка образец GaN, легированный Zn, локально становится ярким люминофором. Были предложены устройства оптической памяти с пространственным разрешением 1-10 мкм. Но причину яркого свечения - активацию акцепторов Zn под влиянием пучка электронов - тогда понять не удалось.
Эту причину раскрыли И.Акасаки и Х.Амано из Нагойского университета [10]. Дело оказалось в том, что примесные атомы Zn при росте кристалла реагировали с неизбежно присутствующими атомами водорода, образовывали нейтральный комплекс Zn-H+ и переставали работать акцепторами. Обработка электронным пучком разрушала связи Zn-H+ и возвращала атомам Zn акцепторную роль. Поняв это, японские ученые сделали принципиальный шаг в создании p-n переходов из GaN. Для аналогичного акцептора - Mg - было показано, что обработкой сканирующим электронным пучком можно р-слой GaN с примесью Mg сделать ярко люминесцирующим, имеющим большую концентрацию дырок, которая необходима для эффективной инжекции дырок в p-n переход. Авторы заявили патент на эффективное легирование GaN р-типа.
В 1989 г. Ш.Накамура (компания “Ничия Кемикал”) начал исследования пленок нитридов элементов III группы, выращенных методом газовой эпитаксии из металлорганических соединений. Он пошел дальше Акасаки – заменил обработку электронным пучком нагревом в атмосфере N2. Водород взаимодействовал с азотом, образуя NH3, и не препятствовал атомам Mg работать акцепторами. Подобранными режимами легирования и термообработки были получены эффективно инжектирующие слои р-типа с большой концентрацией дырок в GaN-гетероструктурах [8, 9]. В технологии были учтены особенности легирования примесями Mg и Zn. Были выращены при сравнительно низких температурах структуры GaN/Ga1–yAlyN, GaN/Ga1–xInxN, Ga1–xInxN/Ga1–yAlyN с толщиной активных слоев до 10-2 нм и шероховатостью гетерограниц порядка одного атомного слоя [8, 9]. Сначала были созданы светодиоды из двойных етероструктур Ga1–xInxN/Ga1–yAlyN с активным слоем Ga1–xInxN:Zn. Максимумы голубого и зеленого света с яркостями 1 и 2 кд приходились на 460 и 520 нм, а внешний квантовый выход составил 3 и 2%.
Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые). Видно, что они перекрывают всю область видимого спектра.
Светят квантовые ямы
На следующем этапе разработок перешли к многослойным гетероструктурам GaN/ /Ga1–xInxN с нелегированным активным слоем Ga1–xInxN толщиной до 2-3 нм. Физические принципы, ранее использованные при создании приборов на основе GaAs/Ga1–xAlxAs и GaAs/InxAlyGa1–x-yP, послужили применительно к новым структурам [8-10].
В сверхтонких слоях сказываются эффекты размерного квантования - зависимости энергетического спектра электронов и дырок от толщины слоя, когда последняя сравнима с длиной волны де Бройля. Таким образом, открылась возможность регулировать цвет свечения, изменяя не состав полупроводника, а толщину потенциальной ямы, называемой в этих условиях квантовой.
Было очень важно также разработать технологию выращивания новых структур, обеспечивая на границах минимальное число дефектов. Помогло то, что в сверхтонких слоях несоответствие параметров решетки в определенных случаях вызывает на гетерограницах лишь упругую деформацию растяжения или сжатия. А чисто упругая деформация не сопровождается образованием дислокаций и дефектов - центров безызлучательной рекомбинации.
Структура светодиода с множественными квантовыми ямами представляет собой довольно сложный “пирог”. На сапфировой подложке, после буферного слоя AlN (толщиной 30 нм), выращен относительно толстый (4 мкм) слой n-GaN:Si. Затем идет активный нелегированный слой, состоящий из пяти чередующихся квантовых ям InxGa1–xN (3-4 нм) и барьеров GaN (4-5 нм). Эффективная ширина запрещенной зоны квантовых ям InxGa1–xN соответствует излучению от голубой до желтой области (450-580 нм), если состав активного слоя меняется в пределах x = 0.2-0.4; она зависит и от толщины d. Расположенный выше барьерный широкозонный слой p-Al0.1Ga0.9N:Mg (100 нм) инжектирует дырки и согласует решетку с решеткой верхнего слоя p-GaN:Mg (0.5 мкм), на который нанесен металлический контакт Ni-Au. Второй металлический контакт (Ti-Al) с нижним слоем n-GaN создается после стравливания части структуры.
Схема светодиода на основе гетероструктур типа InGaN/AlGaN/GaN с множественными квантовыми ямами.
Свет в доме и на улице
В 1999 г. компании “Ничия Кемикал”, “Тойода Госей”, “Хьюлетт-Паккард”, “Крии” выпускали по нескольку десятков миллионов голубых и зеленых светодиодов в месяц. В июле 1999 г. Накамура сообщил, что светоотдача этих приборов достигает 60 лм/Вт, а мощность желтых на основе InGaN - 6 мВт [8]. Если голубой диод покрыть желтым люминофором, в котором свет возбуждается голубым излучением, то сложение цветов дает белое свечение, как это видно из цветовой диаграммы на стр.43. Белые светодиоды выпускают “Ничия” и “Осрам”; пока их светоотдача меньше, чем ламп накаливания, но в проектах разработок на ближайшие годы стоит цель вывести белые полупроводниковые источники света вперед.
Примеры массового применения светодиодов можно найти уже повсюду. На перекрестках Москвы к 850-летнему юбилею города было установлено 1000 светодиодных светофоров; для зеленого света применены элементы на основе нитридов. Сделаны первые светодиодные железнодорожные светофоры с узкой направленностью излучения. На одном из небоскребов Нью-Йорка, на Таймс-Сквер, установлен полноцветный светодиодный экран площадью несколько квадратных метров, смонтированный из 16 млн элементов; в Москве первый экран (меньших размеров) начал работать на Манежной площади. Проектируются телевизоры с экранами более 70 см по диагонали, в которых каждая из 100 тыс. светящихся точек, формирующих изображение, сделана из светодиодов трех цветов - синего, зеленого и красного.
Компания “Осрам-Оптосемикондакторс”, специально организованная двумя промышленными гигантами “Осрам” и “Сименс” для производства светодиодов, продемонстрировала служебное помещение с плафоном на потолке из 14 тыс. голубых, зеленых, желтых, красных и белых светодиодов. Режим работы устанавливается процессором, поэтому простым выбором тока легко задать освещение того или иного типа от теплого, близкого к свету ламп накаливания, до холодного, как у люминесцентных ламп. Излучение светодиодов в плафоне сфокусировано так, что свет идет вниз, не рассеиваясь к стенам. Светодиоды найдут применение и в декоративном освещении архитектурных деталей, как это уже осуществлено в Дуйсбурге (Германия), при освещении моста полупроводниковыми светильниками, смонтированными в столбах ограды.
Производство светодиодов на основе нитридов за последние пять лет опередило все самые оптимистичные прогнозы на 20-30%. Прибыли производящих компаний в 1999 г. составили 420 млн амер. долл. и планируются на отметке 4.5 млрд в 2009 г.
Разработка полупроводниковых излучателей еще раз показала, что наука о полупроводниках далеко не исчерпана. Нобелевская премия Ж.И.Алфёрову и Г.Крёмеру - это признание важности исследований гетеропереходов для настоящего и будущего, исследований, которые порождают технику, кардинально улучшающую нашу жизнь.
Литература
1. Лосев О.В. У истоков полупроводниковой техники: Избранные труды. Л., 1972.
2. Коган Л.М. Полупроводниковые светоизлучающие диоды. М., 1983.
3. Алфёров Ж.И. Физика и Жизнь. СПб., 2000.
4. Копаев Ю.В. Лауреаты Нобелевской премии 2000 г. по физике - Ж.И.Алфёров, Г.Крёмер, Дж.Килби // Природа. 2001. №1. С.3-7.
5. Craford M.G. // MRS Bull. 2000. V.25. №10. P.27-31.
6. Берг А., Дин П. Светодиоды / Пер. с англ. под ред. А.Э.Юновича. М., 1979.
7. Алфёров Ж.И. // Физика и техника полупроводников. 1998. Т.32. №1. С.3-18.
8. Nakamura S., Fasol G. The blue Laser Diode; GaN based Light Emitters and Lasers. Heidelberg, 1997.
9. Nakamura S.et al. // Jap. J. Appl. Phys. Part II. 1999. V.38. №7a. P.3976.
10. Amano H., Kito M., Hiramatsu K., Akasaki I. // Jap. J. Appl. Phys. 1989. V.28. P.L2112-2114.
11. Group III Nitride Semiconductor Compounds: Physics and Applications / Ed. B.Gil. Oxford, 1998.