25509-1 (755971)
Текст из файла
КЛАССИФИКАЦИЯ ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ НА ОСНОВЕ НЕПАРАМЕТРИЧЕСКИХ ОЦЕНОК ПЛОТНОСТИ.
В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).
Вероятностный и статистический анализ нечисловых данных сопровождали теорию вероятностей и математическую статистику с самого начала их развития. Типичными примерами являются урновые схемы и изучение рождаемости. Испытание Бернулли- вероятностная модель простейшего объекта нечисловой природы. Наиболее массовым применением статистических методов является, видимо, выборочный контроль качества продукции по альтернативному признаку (т. е. по признаку "годен” - “не годен"), относящийся, очевидно, к статистике объектов нечисловой природы [2].
Развитие прикладных исследований привело к необходимости рассмотрения в качестве статистических данных различных объектов нечисловой природы. Этот термин применяем к объектам, которые нецелесообразно рассматривать как описанные числами. Другими словами, речь идет об элементах пространства, не являющихся линейными (векторными). Примеры: бинарные отношения (ранжировки, разбиения, толерантности и т. д.); множества; нечеткие множества; результаты измерений в шкалах, отличной от абсолютной; как обобщение перечисленных объектов - элементы пространств общей природы. Для результатов наблюдений, являющихся объектами нечисловой природы, рассматривают [1] классические задачи статистики: описание данных (включая классификацию) оценивание (параметров, характеристик, плотности распределения, регрессионной зависимости и т. д.).
Математический аппарат статистики объектов нечисловой природы основан не на свойстве линейности пространства, а на применении симметрик и метрик в нем, поэтому существенно отличается от классического.
В прикладных работах наиболее распространенный пример объектов нечисловой природы - разнотипные данные. В этом случае реальный объект описывается вектором, часть координат которого - значения количественных признаков, а часть - качественных (номинальных и порядковых).
Основная цель настоящего раздела - обосновать новый подход [3] к классификации в пространствах произвольной природы, основанный на построении не параметрических оценок плотности распределений вероятности в таких пространствах [4].
" Пусть
- измеримое пространство,.
и
. суть
-конечные меры на
., причем
абсолютно непрерывна относительно
, т. е. из равенства.
. =0 следует равенство
=0, где
.. В этом случае на
существует неотрицательная измеримая функция такая, что
для любого
Функция называется производной Родона-Никодима меры
по мере
, а в случае, когда
- вероятностная мера, также плотностью вероятности
по отношению к
. " [5]
Будем считать, что в пространстве объектов нечисловой природы фиксирована некоторая мера
, а мера
соответствует распределению Р случайного элемента
со знаниями в измеримом пространстве
, т. е.
Если -
пространство из конечного числа точек, то в качестве меры
можно использовать считающую меру (приписывающую единичный вес каждой точке), т. е.
, или
В случае считающей меры значение плотности в точке
совпадает с вероятностью попасть в точку
, т. е.
Многие методы классификации используют расстояния или меры близости между объектами или признаками. Такие методы пригодны и для классификации объектов нечисловой природы, лишь бы в соответствующем пространстве было определено расстояние или мера близости. Таким образом, широко известные иерархические агломеративные алгоритмы ближайшего соседа, дальнего соседа, средней связи и др., результатом работы которых являются дендрограммы, на самом деле относятся к статистике объектов нечисловой природы.
Не пытаясь рассмотреть все многообразие методов классификации в статистике объектов нечисловой природы (см., например, [6, 7]), сосредоточимся на тех из них, которые используют плотности распределения и их оценки. Зная плотности распределения классов, можно решать основные задачи классификации - как задачи выделения кластеров, так и задачи диагностики. В задачах кластер-анализа можно находить моды плотности и принимать их за центры кластеров или за начальные точки итерационных методов типа динамических сгущений. В задачах диагностики (дискриминации, распознавания образов с учителя) можно принимать решения о классификации объектов на основе отношения плотностей, соответствующих классам. При неизвестных плотностях представляется естественным использовать их состоятельные оценки. Корректность такой постановки, как правило, нетрудно обосновать, например, в стиле [8]. Таким образом, для переноса на пространства произвольной природы основных методов классификации рассматриваемого типа достаточно уметь оценивать плотность распределения вероятности в таких пространствах.
Методы оценивания плотности вероятности в пространствах общего вида предложен и первоначально изучены в [4]. В частности, в задачах классификации объектов нечисловой природы предлагаем использовать непараметрические ядерные оценки плотности типа Парзена-Розенблатта (этот вид оценок и его название введены нами в [4]):
,
где К:
- ядерная функция
- выборка по которой оценивается плотностью,
- расстояние между элементом выборки
и точкой
, в которой оценивается плотность последовательность
показателей размытости такова, что при
0 и n
, а
- нормирующий множитель, обеспечивающий выполнение условия
Оценки типа Парзена-Розенблатта - частный случай линейных оценок [4]. В теоретическом плане они выделяются тем, что удается получать результаты такого же типа, что в классическом одномерном случае (
), но, разумеется, с помощью совсем иного математического аппарата.
Одна из основных идей состоит в том, чтобы согласовать между собой расстояние
и меры
. А именно, рассмотрим шары радиуса
и их меры
Предположим, что
как функция
при фиксированном
непрерывна и строго возрастает. Введем функцию
Это - монотонное преобразование расстояния, а потому
- метрика или симметрика (т. е. неравенство треугольника может быть не выполнено), которую, как и
, можно рассматривать как меру близости между
и
.
Введем
.
Поскольку
определена однозначно, то
^
где
., а потому
Переход от
к
напоминает классическое преобразование, использованное Н. В. Смирновым,
, переводящее случайную величину
с непрерывной функцией распределения
в случайную величину
, равномерно распределенную на [ 0, 1]. Оба рассматриваемых преобразования существенно упрощают дальнейшие рассмотрения.
Преобразование
зависит от точки
, что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в точке.
Функцию
, для которой мера шара радиуса
равна
, называют [4] естественным показателем различия или естественной метрикой. В случае пространства
и евклидовой метрики
имеем
где
-объем шара единичного радиуса в
.
Поскольку можно записать, что
где
то переход от
к
соответствует переходу от
к
. Выгода от такого перехода заключается в том, что утверждения приобретают более простую формулировку.
ТЕОРЕМА 1. Пусть
- естественная метрика,
Плотность
непрерывна в
и ограничена на
, причем
. Тогда
, оценка
является состоятельной, т. е.
по вероятности при
,
Теорема 1 доказана в [4]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, т. е. о поведении величины
и об оптимальном выборе показателей размытости
.
Введем круговое распределение
и круговую плотность
.
ТЕОРЕМА 2. Пусть ядерная функция
непрерывна и
при
. Пусть круговая плотность допускает разложение
причем остаточный член равномерно ограничен [0, 1,....,
]. Пусть
Тогда
Величина
достигает минимума, равного
при
что совпадает с классическими результатами для
(см. [9, с316]). Заметим, что для уменьшения смещения оценки приходится применять знакопеременные ядра
.
В случае дискретных пространств естественных метрик не существует. Однако можно получить аналоги теорем 1 и 2 переходя к пределу не только по объему выборки
, но и по параметру дискретности
.
Пусть
- последовательность конечных пространств,
- расстояния в
для любого
.
Положим
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















