183441 (743571)

Файл №743571 183441 (Графический метод и симплекс-метод решения задач линейного программирования)183441 (743571)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Геометрический метод решения задач ЛП

2. Симплекс-метод

2.1 Идея симплекс-метода

2.2 Реализация симплекс-метода на примере

2.3 Табличная реализация простого симплекс-метода

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Тема моей работы касается решения задач, возникающих в экономике. При этом встает вопрос о выборе наилучшего в некотором смысле варианта решения. А на поиск возможного варианта часто влияют разного рода факторы, сужающие рамки выбора. Иначе говоря, требуется решить задачу оптимизации, которая состоит в необходимости выбора наилучшего варианта решений среди некоторого, как правило, ограниченного множества возможных вариантов.

Задача оптимизации может быть сформулирована на языке математики, если множество доступных вариантов удается описать с помощью математических соотношений (равенств, неравенств, уравнений), а каждое решение - оценить количественно с помощью некоторого показателя, называемого критерием оптимальности или целевой функцией. Тогда наилучшим решением будет то, которое доставляет целевой функции наибольшее или наименьшее значение, в зависимости от содержательного смысла задачи. Так, например, при инвестировании ограниченной суммы средств в несколько проектов естественной является задача выбора тех проектов, которые могут принести в будущем наибольшую прибыль. При доставке в магазины продукции от различных поставщиков возникает задача минимизации транспортных затрат.

Процесс формализации задачи называется построением ее математической модели. Он состоит из трех этапов.

  1. Выбор параметров задачи, от которых зависит решение. Эти параметры называют управляющими переменными и обозначают , формируя из них вектор . Принять решение – это значит задать конкретные значения переменных.

  2. Построение числового критерия, по которому можно сравнивать различные варианты решений. Такой критерий принято называть целевой функцией и обозначать через .

  3. Описание всего множества X допустимых значений переменных – ограничений, связанных с наличием материальных ресурсов, финансовых средств, технологическими возможностями и т.п..

Математическая задача оптимизации состоит в нахождении такого допустимого решения , которое доставляет целевой функции наибольшее или наименьшее значение среди всех возможных решений.

.


1. Геометрический метод решения задач ЛП

Этот метод часто используется при решении задач, в которых только две неизвестных величины. Разберем его на следующих примерах:

Пример 1.1. (Задача о производстве красок).

Небольшая фабрика изготовляет два вида красок: INT - для внутренних работ и EXT - для наружных работ. В производстве красок используются два исходных продукта А и В. Из-за малой площади склада максимально возможные суточные запасы этих продуктов равны 6 т. и 8 т. соответственно. На производство 1 тонны краски INT расходуется 1 тонна продукта А и 2 тонны продукта В, а на изготовление 1 тонны краски EXT идет 2 тонны продукта А и 1 тонна продукта В. Фабрика продает краску по цене 3 тыс. долл. за тонну краски INT и 2 тыс. долл. за тонну краски EXT. Исходные данные удобно свести в таблицу:

Исходные продукты

Расход продукта на 1 т. краски

Запас продуктов

INT

EXT

A

1

2

6

B

2

1

8

Цена 1т. краски

3 тыс. долл.

2 тыс. долл.

Изучение рынка сбыта показало, что суточный спрос на краску EXT никогда не превышает спрос на краску INT, более чем на 1 тонну. Какое количество краски каждого вида должна производить фабрика в сутки, чтобы доход от реализации продукции был максимален?

Построим математическую модель задачи. Для этого надо определить переменные задачи, целевую функцию и ограничения, которым удовлетворяют переменные. Обозначим через x1 - планируемый суточный объем производства краски INT, а через x2 - суточный объем производства краски EXT. Целевая функция f(x) будет выражать суточный доход от продажи краски, равный 3x1 + 2x2 (тыс. долл.). Этот доход подлежит максимизации

f(x)= 3x1 + 2x2 max.

Построим ограничения задачи, связанные с ограниченными запасами продуктов А и В. На производство краски INT в количестве x1 (т) будет использовано 1x1 (т) продукта А, а на производство краски EXT в объеме x2 (т) будет затрачено 2x2 (т) продукта А. Поскольку суточный запас продукта А равен 6 т., то расход продукта А на изготовление красок двух видов не может превышать в сутки этой величины: 1x1+ 2x2 6. Аналогично получим ограничение, связанное с запасом продукта В: 2x1+1x2 8. Ограничение по соотношению спроса на краски можно описать неравенством: x2 - x1 1. Учитывая естественные условия неотрицательности объемов выпуска продукции, окончательно получим следующую задачу линейного программирования

f(x) = 3 x1 + 2 x2 max (1.1)

1 x1 + 2 x2 6, (1.2)

2 x1 + 1 x2 8, (1.3)

- x1 + x2 1, (1.4)

x1 0, x2 0. (1.5)

Построим множество планов задачи, описываемое ограничениями (1.2)-(1.5). Рассмотрим первое неравенство. Оно задает некоторую полуплоскость, расположенную по одну сторону от граничной прямой

p1: 1x1+2x2=6

Построим эту прямую на плоскости с координатными осями x1 и x2. Для проведения прямой достаточно знать две ее точки. Проще всего найти точки пересечения прямой с осями координат. Полагая x1 = 0, из уравнения прямой получим x2 = 3, а при x2 = 0 найдем x1 = 6. Таким образом прямая p1 пройдет через точки (0,3) и (6,0). Чтобы определить, по какую сторону от прямой расположена искомая полуплоскость, достаточно подставить в неравенство (1.2) координаты любой точки плоскости. Если прямая не проходит через начало координат, то удобнее всего взять точку (0, 0). Очевидно, что в этой точке неравенство (1.2) строго выполняется (1* 0 + 2* 0 < 6), значит полуплоскость, определяемая этим неравенством, лежит ниже прямой p1, включая в себя начало координат. Искомую полуплоскость отметим штриховкой (рис.1.1).

Аналогично построим полуплоскость, задаваемую неравенством (1.3). Для этого нанесем на координатную плоскость граничную прямую

p2: 2x1+x2=8,

найдя ее точки пересечения с осями координат: (0,8) и (4,0).

Подставляя координаты точки (0,0) в неравенство (2.3), видим, что начало координат лежит в искомой полуплоскости (2* 0 + 1* 0 < 8), значит все точки, удовлетворяющие неравенству (2.3), расположены левее прямой p2. Отметим эту область штриховкой (рис.1.1).

Точки, задаваемые ограничением (4), находятся ниже прямой

p3: -x1+x2=1,

проходящей через точки (0, 1) и (-1, 0).

Наконец, условия неотрицательности: x1 0, x2 0 задают все точки первой четверти, что также отметим штриховкой.

Выделяя теперь точки плоскости, удовлетворяющие всем ограничениям задачи (1.1)-(1.5), то есть расположенные одновременно во всех заштрихованных полуплоскостях, получаем множество планов X. Оно представляет собой многоугольник (в данной задаче - пятиугольник). Его стороны лежат на прямых, уравнения которых получаются из исходной системы неравенств (1.2)-(1.5) заменой знаков неравенств на строгие равенства.

Рис. 1.1

Для графического представления целевой функции введем понятие линии уровня (изолинии функции).

Определение. Линией уровня (изолинией) функции f(x) называется множество точек x = (x1, x2), в которых она принимает одно и то же постоянное значение f(x) = h, где h - некоторое число. Для линейной функции двух переменных f(x) = c1 x1 + c2 x2 линия уровня, соответствующая числу h, будет представлять прямую с уравнением

c1 x1 + c2 x2 = h (1.6)

При изменении числа h будем получать семейство линий уровня (параллельных прямых) с одним и тем же направляющим вектором c = =(c1, c2), перпендикулярным всем прямым. Известно, что вектор c = (c1, c2) для линейной функции f(x) = c1 x1 +c2 x2 указывает направление ее возрастания. Геометрически это означает, что при параллельном перемещении прямой (1.6) в направлении целевого вектора c значение целевой функции возрастает.

Построим линии уровня целевой функции f(x) = 3x1 + 2 x2 в нашей задаче. Их уравнения будут иметь вид 3x1 + 2 x2 = h. Они задают семейство параллельных прямых, зависящих от параметра h. Все прямые перпендикулярны целевому вектору c = (3, 2), составленному из коэффициентов целевой функции, поэтому для построения семейства линий уровня целевой функции достаточно построить ее целевой вектор, и провести несколько прямых, перпендикулярных этому вектору. Линии уровня будем проводить на множестве планов X, помня при этом, что при параллельном перемещении прямых в направлении целевого вектора c = (3, 2) значение функции f(x)= 3x1 + 2x2 будет возрастать. Поскольку в задаче оптимальный план должен доставлять целевой функции максимально возможное значение, то для решения задачи графически надо среди всех точек x = (x1, x2) множества планов X найти такую точку x* = (x1*, x2*), через которую пройдет последняя линия уровня в направлении целевого вектора c = (3,2). Из рисунка 1.2 видно, что искомой точкой будет точка, лежащая в вершине множества X, образованной пересечением прямых p1 и p2. Решая систему уравнений, описывающих эти прямые найдем оптимальный план x1* = 3 1/3, x2* = 1 1/3. При этом максимальное значение целевой функции будет равно f(x*) = 12 2/3. Таким образом, ежесуточно фабрика должна производить 3 1/3 тонн краски INT и 1 1/3 тонн краски EXT, получая при этом доход 12 2/3 тыс. долларов.

x1 + 2 x2 = 6,

2 x1 + x2 = 8,

Пример 1.2. Лечебное предприятие закупает два вида мультивитаминных комплексов «Здоровье» и «Долголетие» с содержанием витаминов трех видов. Количество единиц этих витаминов в одном грамме мультикомплексов, необходимая их норма при профилактическом приеме и стоимость одного грамма комплексов «Здоровье» и «Долголетие» отражены в таблице

Витамины

Кол-во единиц витаминов в 1 гр. комплекса

Норма единиц витаминов

Здоровье

Долголетие

V1

3

1

9

V2

1

2

8

V3

1

6

12

Стоимость 1 грамма комплекса

5 руб.

4 руб.

Сколько граммов мультивитаминных комплексов каждого вида требуется на один профилактический прием, чтобы были получены все витамины не меньше требуемой нормы, и при этом их суммарная стоимость была минимальной.

Составим математическую модель задачи. Для этого введем переменные: x1 – количество комплекса «Здоровье» (гр.), x2 – количество комплекса «Долголетие» (гр.), необходимое для профилактического приема. Целевая функция выражает суммарную стоимость витаминных комплексов, которая должна быть минимально возможной

f(x)= 5 x1 + 4 x2 min (1.7)

Ограничения, описывающие выполнение норм по витаминам, имеют вид:

По витамину V1: 3x1 + x2 9, (1.8)

Характеристики

Тип файла
Документ
Размер
3,47 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее