shpori econometrika (743523), страница 6

Файл №743523 shpori econometrika (Шпоры по эконометрике) 6 страницаshpori econometrika (743523) страница 62016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности.

Пусть имеет место соотношение (1), однако

Тогда

Как показывает это соотношение, первые разности ∆t , непо­средственно зависят от фактора времени t и, следовательно, со­держат тенденцию.

Определим вторые разности:

Очевидно, что вторые разности ∆t2, не содержат тенденции, поэтому при наличии в исходных уровнях тренда в форме пара­болы второго порядка их можно использовать для дальнейшего анализа. Если тенденции временного ряда соответствует экспо­ненциальный или степенной тренд, метод последовательных раз­ностей следует применять не к исходным уровням ряда, а к их ло­гарифмам.

27. ВКЛЮЧЕНИЕ В МОДЕЛЬ РЕГРЕССИИ ФАКТОРА ВРЕМЕНИ.

В корреляционно-регрессионном анализе устранить воздей­ствие какого-либо фактора можно, если зафиксировать воздейст­вие этого фактора на результат и другие включенные в модель факторы. Этот прием широко используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной.

Модель вида относится к группе моделей, включающих фактор времени. Оче­видно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только те­кущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной. Преимущество данной модели по сравнению с методами от­клонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исход­ных данных, поскольку значения yt и хt есть уровни исходных временных рядов. Кроме того, модель строится по всей совокуп­ности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры а и b модели с включением фактора вре­мени определяются обычным МНК.

Система нормальных уравнений имеет вид:

28 .АВТОКОРРЕЛЯЦИЯ В ОСТАТКАХ. КРИТЕРИЙ ДАРБИНА-УОТСОНА.

Существуют два наиболее распространенных метода опреде­ления автокорреляции остатков. Первый метод — это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод — использо­вание критерия Дарбина — Уотсона и расчет величины

(1)

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадра­тов по модели регрессии. Можно предположить что: , предположим также

Коэффициент автокорреляции остатков оп­ределяется как

С учетом (3) имеем:

Таким образом, если в остатках существует полная положи­тельная автокорреляция и , то d= 0. Если в остатках полная отрицательная автокорреляция, то и, следовательно, d= 4.Если автокорреляция остатков отсутствует, то и d = 2. Следовательно, 0≤d≤4

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина — Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные ги­потезы Н1 Н1* состоят, соответственно, в наличии положитель­ной или отрицательной автокорреляции в остатках. Далее по спе­циальным таблицам определяются критичес­кие значения критерия Дарбина — Уотсона dl и du для заданного числа наблюдений n, числа независимых переменных модели к и уровня значимости α. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Если фактическое значение критерия Дарбина — Уотсона по­падает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ.

Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными.

Эконометрическое моделирование осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида

является примером модели с распределенным лагом.

Наряду с лаговыми значениями независимых, или факторных, переменных на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида

относится к моделям авторегрессии. Построение моделей с распределенным лагом и моделей ав­торегрессии имеет свою специфику. Во-первых, оценка парамет­ров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует спе­циальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии су­ществует определенная взаимосвязь, и в некоторых случаях необ­ходимо осуществлять переход от одного типа моделей к другому. Интерпретация параметров моделей с распределительным лагом. Рассмотрим модель с распределенным лагом в ее общем виде в предположении, что максимальная величина лага конечна:

Эта модель говорит о том, что если в некоторый момент вре­мени t происходит изменение независимой переменной х, то это изменение будет влиять на значения переменной у в течение l следующих моментов времени.

Коэффициент регрессии b0 при переменной xt характеризует среднее абсолютное изменение уt при изменении хt на 1 ед. свое­го измерения в некоторый фиксированный момент времени t, без учета воздействия лаговых значений фактора x. Этот коэффици­ент называют краткосрочным мультипликатором.

В момент (t+1) совокупное воздействие факторной перемен­ной xt на результат уt , составит (b0 + b1) усл. ед., в момент (t+2) это воздействие можно охарактеризовать суммой (b0+b1+b2) и т. д. Полученные таким образом суммы называют промежуточными мультипликаторами.

Введем следующее обозначение:

b0 +b1 +…+bl =b

Величину b называют долгосрочным мультипликатором. Он по­казывает абсолютное изменение в долгосрочном периоде t + l ре­зультата у под влиянием изменения на 1 ед. фактора х.

Предположим

ßj =bj /b, j=0:1

Назовем полученные величины относительными коэффициен­тами модели с распределенным лагом. Сред­ний лаг определяется по формуле средней арифметической взве­шенной: и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент времени t. Небольшая величина среднего лага свидетельствует об относительно быстром реагировании резуль­тата на изменение фактора, тогда как высокое его значение гово­рит о том, что воздействие фактора на результат будет сказывать­ся в течение длительного периода времени. Медианный лаг — это величина лага, для которого

Это тот период времени, в течение которого с момента време­ни t будет реализована половина общего воздействия фактора на результат.

30 МЕТОД АЛМОНА.

В методе А. предполагается ,что веса текущих лаговых значений объясняющих переменных подчиняются палениальному распределению. bj = c0 +c1j+ c2j2 +…+ ckjk

Уравнение регрессии примет вид yt = a+c0z0+c1z1+ c2z2 + ckzkt , где zi = ; i=1,…,k; j=1,…,p. Расчет параметров модели с распределенным лагом проводится по следующей схеме:

  1. Устанавливается макси. величина лага l.

  2. Определяется степень паленома k,описывающего структуру лага.

  3. Рассчитывается значение переменных с z0 до zk.

  4. Определяются параметры уравнения линейной регрессии yt(zi).

  5. Рассчитываются параметры исходной модели с распределенным лагом.

31 МЕТОД КОЙКА.

В распределение Койка делается предположение, что коэффициенты при лаговых значениях объясняющей переменной убывают в геометрической прогрессии. bl=b0λl; l=0,1,2,3; 0 ≤ λ ≤ 1. Уравнение регрессии преобразовывается к виду:

yt=a+b0xt+b0λxt-1+b0λ2xt-2+…+ εt. После несложных преобразований получаем ур-ие оценки параметров исходящего ур-ия.

32 МЕТОД ГЛАВНЫХ КОМПОНЕНТ.

Характеристики

Тип файла
Документ
Размер
553 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6505
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее