shpori econometrika (743523), страница 4
Текст из файла (страница 4)
№17. СУЩНОСТЬ АНАЛИЗА ОСТАТКОВ ПРИ НАЛИЧИИ РЕГРЕССИОННОЙ МОДЕЛИ. КАК МОЖНО ПРОВЕРИТЬ НАЛИЧИЕ ГОМО- ИЛИ ГЕТЕРОСКЕДАСТИЧНОСТИ ОСТАТКОВ. ОЦЕНКА ОТСУТСТВИЯ АВТОКОРРЕЛЯЦИИ ОСТАТКОВ ПРИ ПОСТРОЕНИИ СТАТИСТИЧЕСКОЙ РЕГРЕССИОННОЙ МОДЕЛИ.
С этой целью строиться график зависимости остатков ei от теоретических значений результативного признака:
Если на графике получена горизонтальная полоса, то остатки ei представляют собой случайные величины и МНК оправдан, теоретические значения ух хорошо аппроксимируют фактические значения у.
Возможны следующие случаи: если ei зависит от уx, то: 1.остатки ei не случайны.2. остатки ei, не имеют постоянной дисперсии. 3. Остатки ei носят систематический характер в данном случае отрицательные значения ei, соответствуют низким значениям ух, а положительные — высоким значениям. В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию.
Как можно проверить наличие гомо- или гетероскедастичноси остатков? Гомоскедастичность остатков означает, что дисперсия остатков ei одинакова для каждого значения х.Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции. а — дисперсия остатков растет по мере увеличения х; б — дисперсия остатков достигает максимальной величины при средних значениях переменной х и уменьшается при минимальных и максимальных значениях х; в — максимальная дисперсия остатков при
малых значениях х и дисперсия остатков однородна по мере увеличения значений х. Графики гомо- и гетеро-ти.
Оценка отсутствия автокорреляции остатков(т.е. значения остатков ei распределены независимо друг от друга). Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Коэффициент корреляции между ei и ej , где ei — остатки текущих наблюдений, ej — остатки предыдущих наблюдений, может быть определен по обычной формуле линейного коэффициента корреляции . Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированы и функция плотности вероятности F(e) зависит j-й точки наблюдения и от распределения значений остатков в других точках наблюдения. Для регрессионных моделей по статической информации автокорреляция остатков может быть подсчитана, если наблюдения упорядочены по фактору х. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динамики, где ввиду наличия тенденции последующие уровни динамического ряда, как правило, зависят от своих предыдущих уровней.
№18 СМЫСЛ ОБОБЩЕННОГО МНК.
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный МНК заменять обобщенным методом. Обобщенный МНК применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Обобщенный МНК для корректировки гетерос-ти. В общем виде для уравнения yi=a+bxi+ei при где Ki – коэф-т пропор-ти. Модель примет вид: yi=
+
xi+
ei . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения на
. Тогда дисперсия остатков будет величиной постоянной. От регрессии у по х мы перейдем к регрессии на новых переменных: y/
и х/
. Уравнение регрессии примет вид:
. По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные у и х взяты с весами
. Коэф-т регрессии b можно определить как
Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весами 1/К.Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Модель примет вид:
. Модель с преобразованными переменными составит
. Это уравнение не содер-т свобод-го члена, применяя обычный МНК получим:
Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных х/К имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными.
№19. СИСТЕМЫ ЭКОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ. ПРОБЛЕМА ИДЕНТИФИКАЦИИ.
С ложные экономические процессы описывают с помощью системы взаимосвязанных уравнений. Различают несколько видов систем уравнений: 1. Система независимых уравнений - когда каждая зависимая переменная у рассматривается как функция одного и того же набора факторов х:
y1=a11*x1+a12*x2+…+a1m*xm+e1 Для решения этой системы и нахождения ее параметров
yn=an1*x1+an2*x2+…+anm*xm+en используется МНК.
2.Система рекурсивных уравнений – когда зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении:
y 1=a11*x1+a12*x2+…+a1m*xm+e1
y2=b21*y1+a21*x1+a22*x2+…+a2m*xm+e2
y3=b31*y1+b32*y2+a31*x1+a32*x2+…+a3m*xm+e3
yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en
Для решения этой системы и нахождения ее параметров используется МНК.
3 Система взаимосвязанных уравнений – когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других – в правую.
y 1=b12*y2+b13*y3+…+b1n*yn+a11*x1+a12*x2+…+a1m*xm+e1
y2=b21*y1+b23*y3+…+b2n*yn+a21*x1+a22*x2+…+a2m*xm+e2
yn=bn1*y1+bn2*y2+…+bnn-1*yn-1+an1*x1+an2*x2+…+anm*xm+en
Такая система уравнений называется структурной формой модели. Эндогенные переменные – взаимосвязанные переменные, которые определяются внутри модели (системы) у. Экзогенные переменные – независимые переменные, которые определяются вне системы х. Предопределенные переменные – экзогенные и лаговые (за предыдущие моменты времени) эндогенные переменные системы. Коэффициенты a и b при переменных – структурные коэффициенты модели. Система линейных функций эндогенных переменных от всех предопределенных переменных системы - приведенная форма модели.
где
- коэффициенты приведенной формы модели.
Необходимое условие идентификации – выполнение счетного правила:
D+1=H –уравнение идентифицируемо;
D+1 D+1>H – уравнение сверхидентифицируемо. Где Н – число эндогенных переменных в уравнении, D – число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе. Достаточное условие идентификации- определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении на равен нулю и ранг этой матрицы не менее эндогенных переменных без единицы. Для решения идентифицируемого уравнения применяется КМНК, для решения сверхидентифицируемых - двухшаговый МНК. №20 КМНК. Применяется в случае точно идентифицируемой модели. Процедура применения КМНК предполагает выполнение следующих этапов: 1. Составляют приведенную форму модели и определяют численные значения параметров для каждого ее уравнения обычным МНК. 2. путем алгебраических преобразований переходят от приведенной формы к уравнениям структурной формы модели, получая тем самым численные оценки структурных параметров. №21 ДВУХШАГОВЫЙ МНК. (ДМНК) Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных. Сверхидентифицируемая структурная модель может быть двух типов: все уравнения системы сверхидентифицируемы; система содержит наряду со сверхидентифицируемыми точно Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений. Применим ДМНК к простейшей сверхидентифицируемой модели: Данная модель может быть получена из предыдущей идентифицируемой модели: если наложить ограничения на ее параметры, а именно: b12 =a11 В результате первое уравнение стало сверхидентифицируемым: Н=1 (у1), D=1(х2) и D+1 > Н. Второе уравнение не изменилось и является точно идентифицируемым: Н = 2 и D=1
идентифицируемые уравнения.