168233 (741845), страница 2
Текст из файла (страница 2)
…Но оказывается, что топливо-раствор может быть водородным топливом.
2. ДОСТИЖИМАЯ МОЩНОСТЬ "пороховых" машин – многократно превышает показатели атмосферных ДВС и ограничена лишь конструкционной прочностью газо-/гидро/расширительного механизма. Независимость "пороховой" мощности от "оборотистости" вала двигателя – резко упрощает привод к движителю (колесу, винту, водомёту, гидроцилиндру, гидромотору и т.п.). Снижение "механических" потерь мощности в трансмиссии на 50% – по аналогии с приводом паровых машин – эквивалентно дополнительному увеличению эффективности ВНС-цикла в сравнении с атмосферными ДВС в ~1,5 раза, т.е. Квнс/Кб ³ 4.
…Но оказывается, что "пороховой" двигатель – много проще атмосферных ДВС.
Оказывается, что аммиачно-селитренные смеси, используемые сначала как удобрения, а последние ½ века – как самый дешёвый источник энергии взрыва, в газо-механическом эквиваленте топлива-раствора – наиболее дешёвый источник механической работы. Цикл прямого преобразования химической энергии в механическую работу – эффективнее разрабатываемых технологий электротопливных элементов, "биотоплив" и электромобилей с миллиардными ассигнованиями.
…Но оказывается, что возможны инновации с мировой эффективностью ~1трлн. долларов в год, полезные для окружающей среды, а не уничтожающие её.
3. Газо-тепловые двигатели на унитарном топливе-растворе могут работать независимо от окружающей среды: под водой, в шахтах, в стратосфере, на Луне. По сравнению с известными "оборонными" ДВС на взрывоопасных, токсичных и дефицитных топливах-ВВ (нитрометан СН3NO2, перекись водорода Н2О2, производные гидразина N2H4, органические нитраты RONO2) стоимость ВНС-топлив ниже на ~2 порядка, а безопасность в обращении с водосодержащими смесями и плавами – ниже опасности гранулированной аммиачной селитры-удобрения (мировое производство ~20 млн.т в год) и ниже бензина.
В настоящее время азотная промышленность – одна из ведущих отраслей во всех индустриально развитых странах [7]. Необходимый водород для синтеза аммиака получают конверсией природного газа с водяным паром по схеме: СН4 + Н2О « СО + 3Н2, при этом доля стоимости природного газа на азотных производствах достигает до 50-70%. В то же время, в рамках водородной энергетики известны различные способы получения первичного водорода из воды, в т.ч. конкурентоспособные с природным газом [3, 8]. Удешевление первичного сырья-Н2 – означает дополнительное удешевление синтетических ВНС-топлив – дешёвых и технологичных аккумуляторов энергии идеального – водородного – топлива.
В настоящее время мировая азотная промышленность производит около 200 млн.т аммиака в год. Полная замена углеводородных горючих на топлива-ВНС потребует увеличение мощностей мировой азотной промышленности почти на 2 порядка. Однако, ВНС-топлива конкурентны с бензином уже сегодня, когда запасы дешёвого нефтяного сырья ещё не уничтожены. Очевидно, что через 15-20 лет на рынке транспортных и силовых технологий будут востребованы самые дешёвые, эффективные и безопасные технические решения. Контроль топливных технологий – возможность мирового контроля.
Список литературы
"Поиск", № 12 (774) 26.03.2004г., с.7.
Мищенко А.И. Применение водорода для автомобильных двигателей.-Киев: Наукова думка, 1984.
Шпильрайн Э.Э., Малышенко С.П., Кулешов Г.Г. Введение в водородную энергетику. –М.: Энергоатомиздат, 1984.
Андреев К.К. Беляев А.Ф. Теория взрывчатых веществ. –М.: Оборонгиз, 1960, с. 449-453.
Ваншейдт В.А. Дизели. Справочное пособие конструктора. М.-Л., 1957.
Кук М.А. Наука о промышленных взрывчатых веществах. –М.: Недра, 1980, с. 13, 425-434.
Под ред. Семёнова В.П. Производство аммиака. М.: Химия, 1985, с. 7-8.
Студенников В.В., Кудымов Г.И. "Водородная энергетика: этап практических решений", "МИС-РТ"-1999г., Сб.№18-2.
Для подготовки данной работы были использованы материалы с сайта http://www.sciteclibrary.ru