166642 (740362)
Текст из файла
Функциональные производные карбоновых кислот. Двухосновные карбоновые кислоты. ,-Ненасыщенные кислоты
Производные карбоновых кислот
1. Галогенангидриды.
При действии галогенидов фосфора или хлористого тионила происходит образование галогенагидридов:
CH3COOH + PCl5 CH3COCl + POCl3 + HCl
Галоген в галогенангидридах обладает большой реакционной способностью. Сильный индукционный эффект определяет легкость замещения галогена другими нуклеофилами: -OH, -OR, -NH2, -N3, -CN и др.:
CH3COCl + CH3COOAg (CH3CO)2O уксусный ангидрид + AgCl
1. Ангидриды.
Ангидриды образуются при взаимодействии солей кислот с их галогенангидридами:
CH3COONa + CH3COCl NaCl + (CH3CO)2O
Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами.
2. Амиды.
Амиды получают через галогенангидриды
CH3COCl +2 NH3 CH3CONH2 ацетамид + NH4Cl
или из аммонийных солей кислот, при сухой перегонке которых отщепляется вода и образуется амид кислоты. Также амиды кислот образуются как побочный продукт при гидролизе нитрилов. Процессы амидирования имеют важное значение в промышленности для производства ряда ценных соединений (N,N-диметилформамид, диметилацетамид, этаноламиды высших кислот).
4. Нитрилы. Важнейшими представителями нитрилов являются ацетонитрил CH3CN (применяется как полярный растворитель) и акрилонитрил CH2=CHCN (мономер для получения синтетического волокна нейрона и для производства дивинилнитрильного синтетического каучука, обладающего масло- и бензостойкостью). Основным способом получения нитрилов является дегидратация амидов на кислотных катализаторах:
CH3CONH2 CH3C-CN + H2O
5. Сложные эфиры. Сложные эфиры карбоновых кислот имеют важное практическое значение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. Их получают этерификацией спиртов кислотами, ангидридами и галогенангидридами или взаимодействием кислот и алкенов:
CH3-CH=CH2 + CH3COOH CH3COOCH(CH3)2
Многие эфиры используются в качестве душистых веществ:
CH3COOCH2CH3 | грушевая эссенция |
CH3CH2CH2COOCH2CH2CH2CH2CH3 | ананасовая эссенция |
HCOOCH2CH3 | ромовая эссенция |
Двухосновные насыщенные кислоты
Двухосновные предельные (насыщенные) кислоты имеют общую формулу CnH2n(COOH)2. Из них важнейшими являются:
НООС-СООН - щавелевая, этандикарбоновая кислота;
НООС-СН2-СООН - малоновая, пропандикарбоновая кислота;
НООС-СН2-СН2-СООН - янтарная, бутандикарбоновая кислота;
НООС-СН2-СН2-СН2-СООН - глутаровая, пентандикарбоновая кислота.
Способы получения
Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№27).
-
Окисление оксикислот:
OH-CH2CH2COOH HOCCH2COOH HOOC-CH2-COOH
-
Окисление циклоалканов.
Это промышленный способ получения адипиновой кислоты HOOC-CH2CH2CH2CH2-COOH из циклогексана.
Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.
Химические свойства
Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:
В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.
Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.
-
Декарбоксилирование.
При 150 оС щавелевая кислота разлагается на муравьиную кислоту и СО2:
HOOC-COOH HCOOH + CO2
-
Циклодегидратация.
При нагревании -дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:
-
Синтезы на основе малонового эфира.
Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:
HOOCCH2COOH CH3COOH + CO2
HOOCCH(CH3)COOH CH3CH2COOH + CO2
HOOCC(CH3)2COOH (CH3)2CHCOOH + CO2
Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль – натрий-малоновый эфир – алкилируют по механизму нуклеофильного замещения SN2. На основе натрий-малонового эфира получают одно- и двухосновные кислоты:
[CH(COOCH2CH3)2]-Na+ + RBr RCH(COOCH2CH3)2 + 2 H2O
R-CH(COOH)2 алкилмалоновая кислота R-CH2COOH алкилуксусная кислота + CO2
4. Пиролиз кальциевых и бариевых солей.
При пиролизе кальциевых или бариевых солей адипиновой (С6), пимелиновой (С7) и пробковой (С8) кислот происходит отщепление СО2 и образуются циклические кетоны:
Непредельные одноосновные карбоновые кислоты
Непредельные одноосновные кислоты этиленового ряда имеют общую формулу CnH2n-1COOH, ацетиленового и диэтиленового рядов - CnH2n-3COOH. Примеры непредельных одноосновных кислот:
CH2=CHCOOH | акриловая кислота, пропеновая кислота |
CH2=CHCH2COOH | винилуксусная кислота, 3-бутеновая кислота |
CH3CH=CHCOOH | кротоновая кислота, 2-бутеновая кислота |
CH2=C(CH3)COOH | -метилакриловая кислота, метакриловая кислота, метилпропеновая кислота |
CHCCOOH | пропиоловая (пропиновая) кислота |
CH3CH2CH=CHCH2CH=CH(CH2)7COOH | линоленовая кислота |
Непредельные одноосновные кислоты отличаются от предельных большими константами диссоциации. Ненасыщенные кислоты образуют все обычные производные кислот - соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. Но за счет кратных связей они вступают в реакции присоединения, окисления и полимеризации.
Благодаря взаимному влиянию карбоксильной группы и кратной связи присоединение галогенводородов к ,-непредельным кислотам происходит таким образом, что водород направляется к наименее гидрогенизированному атому углерода:
CH2=CHCOOH + HBr BrCH2CH2COOH -бромпропионовая кислота
Этиленовые кислоты типа акриловой кислоты и их эфиры значительно легче подвергаются полимеризации, чем соответствующие углеводороды.
отдельные представители
Акриловую кислоту получают из этилена (через хлоргидрин или оксид этилена), гидролизом акрилонитрила или окислением пропилена, что более эффективно. В технике используются производные акриловой кислоты - ее эфиры, особенно метиловый (метилакрилат). Метилакрилат легко полимеризуется с образованием прозрачных стекловидных веществ, поэтому его применяют в производстве органического стекла и других ценных полимеров.
Метакриловая кислота и ее эфиры получают в больших масштабах методами, сходными с методами синтеза акриловой кислоты и ее эфиров. Исходным продуктом является ацетон, из которого получают ацетонциангидрин, подвергают дегидратации и омылению с образованием метакриловой кислоты. Этерификацией метиловым спиртом получают метилметакрилат, который при полимеризации или сополимеризации образует стекловидные полимеры (органические стекла) с весьма ценными техническими свойствами.
Двухосновные ненасыщенные кислоты
Наиболее простые ненасыщенные двухосновные кислоты - фумаровая и малеиновая - имеют одну и ту же структурную формулу HOOCCH=CHCOOH, но разную пространственную конфигурацию: фумаровая - транс-, малеиновая - цис-. Малеиновая кислота (лабильная форма) под действием брома, йода, азотистой кислоты легко переходит в устойчивую (стабильную) форму - фумаровую кислоту. Обратный переход осуществляется под действием ультрафиолетовых лучей. Малеиновая кислота в технических масштабах получается каталитическим окислением бензола и нафталина кислородом воздуха.
Обе кислоты способны образовывать соли, сложные эфиры, амиды и некоторые другие производные кислот. Однако, малеиновая кислота, в отличие от фумаровой, легко образует циклический ангидрид, так как обе карбоксильные группы расположены по одну сторону от двойной связи (цис-изомер). Малеиновый ангидрид служит характерным реактивом для обнаружения 1,3-диеновых соединений: он легко вступает в реакцию диенового синтеза и во многих случаях дает ценные продукты. Малеиновый ангидрид широко применяется при производстве полиэфирных смол и сополимеров со стиролом, акриловым и метакриловым эфирами. Гидратацией малеинового ангидрида получают яблочную кислоту, применяемую в пищевой промышленности.
Монокарбоновые кислоты ароматического ряда
Ароматическими карбоновыми кислотами называются производные бензола, содержащие карбоксильные группы, непосредственно связанные с ароматическим ядром. Кислоты, содержащие карбоксильные группы в боковой цепи, рассматриваются как жирноароматические. По количеству карбокисльных групп ароматические кислоты делятся на одно-, двухосновные и т.д. Название кислоты производится от ароматического углеводорода (бензойная кислота, п-толуиловая кислота).
Способы получения
-
Окисление ароматических углеводородов.
Для синтеза ароматических кислот наиболее подходят метильные гомологи бензола, радикально-цепное окисление которых протекает через стадии первичного гидропероксида и альдегида:
ArCH3 + O2 ArCH2OOH ArCHO+ O2 ArCOOH
Жидкофазным окислением метилбензолов кислородом воздуха в промышленности получают моно- и дикарбоновые ароматические кислоты.
-
Окисление спиртов, альдегидов и кетонов.
Ароматические спирты, альдегиды и кетоны окисляются легче, чем углеводороды. Окисление обычно ведут с помощью гипохлоритов по схеме:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.