166621 (740354)
Текст из файла
16
Формально – кинетический анализ гипотез
Кинетический анализ гипотез – важный этап рациональной стратегии, предшествующий планированию кинетического эксперимента с целью дискриминации гипотез. Каждую гипотезу необходимо проанализировать с учётом различных сочетаний быстрых и медленных стадий (приближения квазистационарности, квазиравновесия, возможных лимитирующих стадий), с учётом различной структуры материальных балансов по катализатору, а также природы поверхности в случае гетерогенных катализаторов и состояния комплексов в растворе в случае гомогенного катализа комплексами металлов.
Стехиометрический анализ механизмов.
Теория маршрутов
Первый этап формально-кинетического анализа гипотез о механизме – стехиометрический анализ механизмов. Основой такого анализа является теория маршрутов Хориути-Тёмкина. Важность теории (или метода) маршрутов, позволяющей найти итоговые уравнения реакций, исходя из механизма процесса, а не только на основе материального баланса, видна из следующего примера.
Пример 1. Материальный баланс процесса описывается уравнением (1), а схема механизма – уравнениями (2 – 3):
(1)
(2)
(3)
(4)
где М – катализатор, МА и МВ – промежуточные вещества.
Если сложить стадии механизма (для стационарных или квазистационарных режимов), промежуточные вещества и катализатор исчезают и получается итоговое уравнение
(5)
С позиций стехиометрии и материального баланса уравнения (1) и (5) линейно зависимы. С позиций кинетических скорость реакции превращения А в В есть скорость по итоговому уравнению (5) и именно эта скорость R, как разность скоростей в прямом (R+) и обратном (R–) направлениях (R = R+ – R–) соответствует механизму (2 – 4). При [А], [В] >> [М]Σ и [М]Σ >> [МА], [МВ] ([М]Σ [М]) получаем для стационарного или квазистационарного режимов
(6)
При равновесии (R+ = R–) из (6) получается константа равновесия реакции (5) К = [А]2 / [В]2. Если возникает задача найти скорость прямой реакции, используя скорость обратной реакции и соотношение (7)
, (7)
где G – изменение изобарно-изотермического (химического) потенциала для итогового уравнения в ходе реакции, то для записи G также следует использовать уравнение, вытекающее из механизма, в данном случае, уравнение (5). Соотношение (7) справедливо только для одномаршрутных реакций.
Напомним определения маршрута реакции. Маршрутом реакции называется такая последовательность стадий, входящих в механизм сложной реакции, которая при сложении уравнений стадий, умноженных на особые стехиометрические числа стадий νj, даёт итоговое уравнение, не содержащее промежуточных веществ (интермедиатов) – важнейших участников механизма сложной реакции.
Маршрутом реакции называется также и вектор, компонентами которого являются стехиометрические числа стадий νj. Для механизма (2 – 4) таким вектором являются набор из трёх компонент ν2 = 1, ν3 = 1, ν4 = 1: = (1, 1, 1). Другой набор стехиометрических чисел
= (0.5, 0.5, 0.5) даёт уравнение А = В, но как мы видели выше, такое итоговое уравнение противоречит кинетике стационарного процесса.
Число линейно-независимых маршрутов определяется по уравнению Хориути (8)
P = S – I + W, (8)
где I – общее число интермедиатов, W – число независимых линейных законов сохранения (число линейных связей между интермедиатами) NI = I – W. Очевидно, что NI = rank BX, где BX – матрица стехиометрических коэффициентов для интермедиатов (BX – блок стехиометрической матрицы механизма ВМ).
Для каталитических реакций с одним типом катализатора (или активных центров) W = 1, т.е. имеется один стехиометрический закон сохранения – материальный баланс по катализатору. В случае двух катализаторов, участвующих в механизме реакции, W = 2.
Для нахождения векторов стехиометрических чисел ,т.е. матрицы Г, решается система уравнений
(9)
Для решения системы (9) используем только линейно-независимые столбцы матрицы ВХ и один вектор из матрицы Г. Например, для двухмаршрутного каталитического процесса с катализатором М и первым интермедиатом Х1 имеем матрицу ВХ (rank BX = 2) S = 4 и вектор .
Получим 2 уравнения:
(10)
Для решения системы двух уравнений с четырьмя неизвестными разделим переменные на независимые, значения которых задаём, и зависимые
. (11)
При таком разделении системы уравнений следует проверить, чтобы определитель левой части D ≠ 0, иначе система не будет иметь решения. Для удобства нахождения значений ν1 и ν2 (при заданных ν3 и ν4), систему (11) приводят к единичному базису (метод Жордано-Гаусса) так, чтобы каждое уравнение слева имело одно неизвестное. Так, сложив уравнения в системе (11), получим ν2 = ν3 + ν4 и система (11) примет вид (12)
(12)
Задавая ν3 = 1 и ν4 = 0, получим ν1 = 1 и ν2 = 1, т.е. для первого маршрута. При ν3 = 0 и ν4 = 1 ν1 = 0 и ν2 = 1 и
для второго маршрута. При ν3 = 0 и ν4 = 0 все решения будут нулевыми.
Пример 2. Рассмотрим пример нелинейного механизма.
(13)
Здесь одно линейно-независимое промежуточное соединение Х (NI = 1), 2 стадии (S = 2) и один маршрут Р = 2 – 1 = 1. Матрицу стехиометрических коэффициентов интермедиатов ВХ запишем вектором-строкой . Поскольку
, умножим вектор-строку
на вектор столбец
. Получим одно уравнение
ν1 – 2ν2 = 0, (14)
которое имеет одно линейно-независимое решение. Задав ν1 = 1, получим ν2 = 0.5. При ν1 = 2 ν2 = 1 и т.д. Если при сложении стадий (1) и (2) (для исключения Х из итогового уравнения) умножим стадии (1) и (2) на наборы 1 0.5 или
2 1, получим итоговые уравнения, соответственно, маршрутов N(1) и N(2):
N(1) А = 1/2 Р
N(2) 2А = Р
Очевидно, что ΔG(Р) (по маршруту N(Р)) определяется уравнением (15)
(15)
В соответствии с уравнением (7) для ΔG(Р) и для ΔGj получаем:
(16)
где –скорости элементарной стадии в прямом и обратном направлениях.
Для маршрута N(1):
(17)
Для маршрута N(2):
(18)
Примем стадию (1) механизма (13) в качестве лимитирующей, а стадию (2) – квазиравновесной ( ). Тогда при равновесии брутто-процесса (
) получим из уравнения (17) константу равновесия итогового уравнения для маршрута N(1)
,
а из уравнения (18) – константу равновесия маршрута N(2)
.
Такие уравнения для К(1) и К(2) получим и в случае лимитирующей второй стадии.
Если кинетические уравнения получены экспериментально, итоговые уравнения выбираются уже не произвольно. Так, например, для механизма (13), если R+ [A] (стадия (1) лимитирующая), итоговое уравнение, которое получится при равновесии, будет уравнением N(1). Если R+ [A]2, итоговое уравнение N(2). Поэтому для определения скорости R- по известной R+ (и наоборот) следует использовать соответствующие кинетике итоговые уравнения. Таким образом, кинетика реакции в случае нелинейного механизма может ограничивать выбор маршрута.
Для обратимых стационарных и квазистационарных процессов с линейными механизмами нет ограничений при выборе базиса маршрутов и итоговых уравнений.. Однако итоговое уравнение, как мы видели в случае 2А = 2В, не должно противоречить кинетическому уравнению, следующему из механизма реакции. Для механизмов с необратимыми стадиями формально также можно использовать любые наборы , включая и отрицательные νj для необратимых стадий. Вместе с тем, в согласии с физическим смыслом целесообразно выбирать такие базисы маршрутов, чтобы и маршрут и скорость по маршруту относились к термодинамически и кинетически разрешенному направлению реакции (направление необратимых стадий).
Для нелинейных одномаршрутных механизмов, имеющих лимитирующую стадию, можно получить выражения для скорости лимитирующей стадии в прямом и обратном направлениях, но в этом случае выбор итогового уравнения будет определяться природой лимитирующей стадии.
Получив матрицу Г, найдём итоговое уравнение, т.е. матрицу стехиометрических коэффициентов итоговых уравнений ВР,
или
и уравнения, связывающие скорости по веществу RN и скорости по маршруту RP
.
Поскольку , получим
или
. Домножив обе части полученного матричного уравнения слева на ВN, получим уравнение (19)
ГRP = Wj, (19)
называемое условием стационарности стадий Хориути - Тёмкина. Это уравнение устанавливает связь между скоростью стадии и скоростью по маршруту и показывает, как стадии механизма перераспределяются по маршрутам. Кроме того, уравнение (19) можно использовать и для вывода уравнений для скоростей Ri и RP (аналогично методу Боденштейна), поскольку система (19) содержит S уравнений и S неизвестных (S = NI + P). Условие стационарности стадий (19) эквивалентно условию Боденштейна
. (20)
Из (20) и (19) получаем уравнение (9), используемое для нахождения базиса маршрутов
.
Пример 3. Механизм гидрирования этилена (21) на поверхности твердого металлического катализатора опишем последовательностью четырех элементарных стадий:
(21)
NI = rankBX = 2 (есть один закон сохранения, ). Следовательно, P = S – NI = 2. Найдем матрицу Г. Для этого запишем систему уравнений
. Возьмем два независимых столбца (Z, ZH2) (см. уравнения (10 – (12))
Задавая 3 и 4, получим два вектора j для двух маршрутов, т.е. матрицу Г:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.