166220 (740167)
Текст из файла
Министерство образования Российской Федерации и науки
Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
“Алтайский Государственный Технический Университет
им. И.И. Ползунова”
Реферат.
По дисциплине «органическая химия» на тему:
«Поли-е-капроамид»
Выполнил студент гр. ПКМ-71:
Беляшкин Н. И.
Проверила преподаватель
кафедры ФиТКМ:
Арсентьев С.Н.
Подпись:
Барнаул 2008 г.
Содержание
Введение
Описание и свойства поли-е-капроамида
Структура и конформация поли-е-капроамида. Схема реакций получения
Получение поли-е-капроамида
Применение поли-е-капроамида
Заключение
Список
Введение.
Жизнь современного человека трудно представить себе без всевозможных искусственных и синтетических материалов. Из них сделаны большинство предметов нашей повседневной жизни. Натуральные же, природные, материалы давно перешли из разряда самых простых и доступных в разряд роскоши, доступной далеко не каждому. Одно из основных мест среди искусственных материалов в нашей жизни занимают полимерные вещества. Мы встречаемся с ними ежедневно: корпуса бытовой техники и электроники, упаковка продуктов, одежда и т. п. Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются незаменимыми и до сих пор, например в целлюлозно-бумажной промышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических полимеров – материалов, полученных синтезом из низкомолекулярных веществ и не имеющих аналогов в природе. Развитие химической технологии высокомолекулярных веществ – неотъемлемая и существенная часть современной промышленности. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой.
Полимером называется органическое вещество, молекулы которого состоят из одинаковых, многократно повторяющихся, звеньев – мономеров. Размер молекулы полимера определяется чилом этих звеньев(степенью полимеризации n). Если n= от 10 и выше, то такие вещества называют олигомерами. Если n значительно больше 10, то вещества называют полимерами.С возрастанием n увеличивается вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 104, и тогда длина молекул достигает микрометров. Молекулярная масса полимера равна произведению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 103 до 3×105. Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморфной до частично кристаллической. Доля кристалличности в значительной мере определяется геометрией цепей. Чем ближе укладываются цепи, тем более кристалличным полимер становится. Кристалличность не может быть идеальной, всегда остаются аморфные участки.
Аморфные полимеры плавятся в диапазоне температур, зависящем не только от их природы, но и от длины цепей; кристаллические имеют точку плавления.
Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифицировать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.
Одним из самых популярных в промышленном и бытовом использовании волокнитов является поли-е-капроамид, который известен широкому кругу людей, как капрон. Необычайную популярность данный полимер приобрел благодаря, в основном, своим прочностным характеристикам и относительной дешевизне в получении. И сегодня трудно представить, например, нашу одежду без капроновых составляющих.
Поли-е-капроамид впервые был получен в 1899 г. Габриэлем и Маасом при поликонденсации е-аминокапроновой кислоты. При этом было сделано очень важное наблюдение, что нагревание е-аминокапроновой кислоты приводит к образованию наряду с полимером также и низкомолекулярного циклического продукта - е-капролактама.
Поли-е-капроамид впоследствии сыграл большую роль в развитии промышленности синтетических волокон: его стали широко применять в качестве исходного материала для производства волокна. Это произошло после того, как Шлак открыл в 1938 г., что е-капролактам при нагревании с водой способен полимеризоваться, образуя при этом высоко-молекулярный полимер. На основе этого цолиамида было создано синтетическое волокно, получившее название перлон или капрон.[8]
Описание и свойства Поли-е-капроамида:
Поли-е-капрамид по своему строению относится к полиамидам.
Полиамиды – высокомолекулярные соединения, содержащие в основании цепи макромолекулы повторяющиеся амидные группы – С(О) – NH –. Отличительной чертой полиамидов является наличие в основной молекулярной цепи повторяющейся амидной группы –C(O)–NH–. Различают алифатические и ароматические полиамиды. Известны полиамиды, содержащие в основной цепи как алифатические, так и ароматическиефрагменты.
Обычное обозначение полиамидов на российском рынке ПА или PA. В названиях алифатических полиамидов после слова «полиамид» ставят цифры, обозначающие число атомов углерода в веществах, использованных для синтеза полиамида. Так, полиамид на основе ε-капролактама называется полиамидом-6 или PA 6. Полиамид на основе гексаметилендиамина и адипиновой кислоты – полиамидом-6,6 или PA 66 (первая цифра показывает число атомов углерода в диамине, вторая – в дикарбоновой кислоте). Помимо обычных обозначений для полиамидов могут использоваться и названия торговых марок: капрон, нейлон, анид, капролон, силон, перлон,рильсан.[4]
ПОЛИ-e-КАПРОАМИД (полиамид-6, капрон, капролон, перлон, силон, амилан, найлон-6, пласкон и т. д.) [—HN— —(СН2)5СО—]n, бесцветная рогоподобная, в тонких слоях прозрачная масса; степень кристалличности до 60%; среднемассовая мол. м. (10-35) · 103; т.пл. 2250C, температура размягчения - 2100C, температура хрупкости от -25 до -300C; плотность 1,13 г/см3; растворяется в концентрированных H2SO4 и концентрированных HCOOH, крезоле, фторированных спиртах и др. сильнополярных растворителях. Обладает высоким водопоглощением (до 12% по массе в зависимости от степени кристалличности).
Для поли-е-капроамида характерны высокая износостойкость, устойчивость формы при повышенных температурах. Для промышленного Поли-е-капроамида: sраст=400-850 МПа (ориентированный Поли-е-капроамид),
90 МПа; ударная вязкость 150-170 кДж/м2; модуль упругости при растяжении 500-750 МПа; относит. удлинение 20-35% (ориентированный); теплостойкость по Вика 160-1800C, по Мартенсу 40-45 0C;
1,7-2,1 кДж/(кг·К); 4,5-11,0 при 60 Гц и 3,6-4,3 при 1 МГц,
0,03-0,07 при 60 Гц и 0,03-0,13 при 1 МГц.[4]
Устойчив к воздействию углеводородов, масел, спиртов, кетонов, эфиров, щелочей, слабых кислот. Не подвержен коррозии, может работать в соленой воде. Экологически чист. Имеет гигиенический сертификат на контакт с пищевыми продуктами и питьевой водой. Растворяется в крезолах, фенолах, концентрированных неорганических кислотах, муравьиной и уксусной кислотах.[6]
В инертной атмосфере не разлагается даже при его температуре плавления. При длительном хранении на воздухе, особенно при повышенных температурах, а также при обработке озоном он окисляется с образованием пероксидных групп (это свойство используют для прививки к Поли-е-капроамиду виниловых мономеров). Поли-е-капроамид не гидролизуется водой; заметный гидролиз происходит при нагревании и ускоряется в присутствии щелочей и особенно кислот.
Поли-е-капроамид вступает в реакцию замещения по атому H амидной группы, например, при взаимодействии с этиленоксидом образуется оксиэтилированный Поли-е-капроамид, с амидом Na - натрийсодержащий Поли-е-капроамид.
Поли-е-капроамид долговечен даже при постоянной механической нагрузке. Высокие диэлектрические свойства капролона позволяют использовать его в радио- и электротехнической отраслях промышленности. Обладает низким коэффициентом трения в паре с любыми металлами, хорошо и быстро прирабатывается. Может работать без смазки в узлах трения. Обеспечивает надежную и бесшумную работу устройств и механизмов. Как правило, в 1,5 -2 раза снижает износ пар трения, повышая их ресурс.[5]
Структура и конформация Поли-е-капроамида. Схема реакций получения:
[9]
Рис. 1 Структура
Поли-е-капроамид является полимером линейной структуры. Его макромолекула имеет вид кривой, пилообразной плоской линии. Такая конформация затрудняет близкую укладку цепей, к тому же полимер является волокнитом, а это также обуславливает линейную укладку цепей: Следовательно капрон является веществом аморфным.
Получение Поли-е-капроамида:
В промышленности Поликапроамид получают полимеризацией мономера (Капролактама); перерабатывают методами, обычными для полиамидов. При полимеризации в формах получают крупногабаритные изделия из Поликапроамид, не требующие механической обработки. Поликапроамид используется в основном для производства волокон (см. Полиамидные волокна), а также для изготовления различных деталей машин. Поликапроамид выпускают под названием капрон, капролон (СССР), перлон (ФРГ), дедерон (ГДР), силон (ЧССР), амилан (Япония), найлон-6, пласкон, капролан (США).
Рис. 2 Получение капроамида
-КАПРОЛАКТАМ (гексагидро-2-азепинон, лактам e-аминокапроновой кислоты, 2-оксогексаметиленимин), молекулярная масса 113,16; бесцветные гигроскопические кристаллы, т. пл. 68,8 °С, т. кип. 262,5 °С; плотность при 70 °С 1,02 г/см3; nD70 1,4790, nD20 (50%-ный водный р-р.1,4795; vкрит 339,5.10-6 м3/моль, tкрит 750 и 805,7 К,
[8]
Рис. 3 поли-е-капроамид
pкрит 47,62.105 Па; температурный коэффициент объемного расширения 0,00104 К-1 (80 90 °С); С0p при 60 и 70 °С соотв. 1,67 и 1,76 кДж/(кг.К); DH0обр -269,63 кДж/моль, DH0сгор - 3605,2 кДж/моль; S0298 1,49 Дж/(моль.К). Уравнения температурной зависимости давления пара: для твердого (308-333 К) lgp (мм рт. ст.) = 13,06 + 4,73.10-3/T, жидкого (353-413К) lgp (мм рт.ст.) = 6,78 + 2344/T; h 0,009 и 0,0047 Па.с соответственно при 78 и 100 °С; g 33,4.10-3 Н/м (130°С); теплопроводность 0,2326 Вт/(м.К); e 74 (20 °С, 20%-ный водный р-р). Капролактам хорошо растворим в воде, органических растворителях и в разбавленной H2SO4; теплота растворения в воде 35,17 Дж/кг, в концентрированной H2SO4 611,27 Дж/кг (298-305 К). По химическим свойствам Капролактам - типичный представитель лактамов. При нагревании с концентрированными минеральными кислотами образует соли; в присутствии небольших количеств воды, спиртов, аминов, карбоновых кислот при 250-260 °С полимеризуется с образованием полиамидной смолы, из которой затем получают волокно капрон (Поли-e-капроамид). В промышленности Капролактам получают из бензола, фенола или толуола по схемам:
Рис.4 Получение Капролактама [7]
В промышленности наибольшее распространение получил метод синтеза Капролактана из бензола. Технологическая схема включает гидрирование бензола в циклогексан в присутствии Pt/Al2O3 или никель-хромового катализатора при 250-350 и 130-220°С, соответственно. Жидкофазное окисление циклогексана в циклогексанон осуществляют при 140-160°С, 0,9-1,1 МПа в присутствии нафтената или стеарата Со. Получающийся в результате окисления циклогексанол превращают в циклогексанон путем дегидрирования на цинк-хромовых (360-400 °С), цинк-железных (400 °С) или медь-магниевых (260-300 °С) смешанных катализаторах. Превращение в оксим проводят действием избытка водного р-ра сульфата гидроксиламина в присутствии щелочи или NH3 при 0-100°С. Завершающая стадия синтеза Капролактама - обработка циклогексаноноксима олеумом или концентрированной H2SO4 при 60-120 °С (перегруппировка Бекмана). Выход Капролактама в расчете на бензол 66-68%. При фотохимическом методе синтеза Капролактама из бензола циклогексан подвергают фотохимическому нитрозированию в оксим под действием NOCl при УФ облучении. Метод синтеза К. из фенола включает гидрирование последнего в циклогексанол в газовой фазе над Pd/Al2O3 при 120-140°С, 1-1,5 МПа, дегидрирование полученного продукта в циклогексанон и дальнейшую обработку как в методе синтеза из бензола. Выход 86-88%. Метод синтеза К. из толуола включает: окисление толуола при 165°С в присутствии бензоата Со; гидрирование получающейся бензойной кислоты при 170°С, 1,4-1,5 МПа в присутствии 5%-ной взвеси Pd на мелкодисперсном угле; нитрозирование циклогексанкарбоновой кислоты под действием нитрозилгидросульфата (нитрозилсерной кислоты) при 75 80 °С до Капролактама-сырца. Некоторые стадии этой схемы недостаточно селективны, что приводит к необходимости сложной очистки получаемого К. Выход К. 71% в расчете на исходный продукт. Полученный любым из перечисленных методов Капролактам предварительно очищают с помощью ионообменных смол, NaClO и КМnО4, а затем перегоняют. Побочный продукт производства (NH4)2SO4 (2,5-5,2 т на 1 т К.), который используется в сельском хозяйстве в качестве минерального удобрения. [2]
Поли-е-капроамид получают главным образом гидролитической полимеризацией Капролактама, протекающей под действием воды в присутствии катализатора (серная, фосфорная, бензойная, уксусная или адипиновая кислота, гексаметиленадипинамид):
[8]
Процесс проводят по периодической или непрерывной технологической схеме при 240-2700C и 1,5-2,5 МПа. Содержание в Поли-е-капроамиде низкотемпературной водорастворимой фракции (Капролактама и его олигомера) достигает 5-11%.
Анионную полимеризацию Капролактама в промышленности проводят в присутствии Na-соли К. (катализатор) и некоторых N-алкилимидов (активатор), например, N-ацетилкапролактама. Реакцияция протекает практически без индукционного периода (в отличие от гидролитич. полимеризации) при 140-2000C и нормальном давлении. Анионную полимеризацию К. проводят в формах и получают полиамидные изделия методом химического формования по схеме "мономер - изделие". Остаточное содержание мономера в Поли-е-капроамиде не превышает 1,5-2,5%, его прочность при сжатии и статическом изгибе, а также твердость в 1,5-1,6 раза выше, ударная вязкость в 3-5 раз выше, а водопоглощение в 2,5 раза ниже, чем у Поли-е-капроамида, получаемого гидролитической полимеризацией. Используя при анионной полимеризации Капролактама полифункциональные активаторы (например, толуилендиизоцианат, N-метакри-лоил-е-капролактам, N, N', N:-тримезиноил-тер-e-капролак-там и др.), получают разветвленный и частично сшитый Поли-е-капроамид, механическая прочность которого выше, чем у обычного.[1]
Определение динамических свойств полимера, их обработка позволяет оценить и количественно описать ориентацию, наведенную в процессе формования в образцах, полученных гидроэкструзией в твердой фазе. На примере гидроэкструдатов поли-е-капроамида установлено, что зависимость параметра порядка ориентации макроструктуры с изменением коэффициента экструзии в определенном диапазоне имеет характер фазового перехода. С целью определения наличия или отсутствия фазового перехода подготовлен и проведен эксперимент по определению удельной теплоемкости гидроэкструдатов поли-е-капроамида в диапазоне температур до 2300С, полученных при различных коэффициентах экструзии. Использовался метод электротеплового моста. Метод основан на нагревании двух образцов в одинаковых условиях с одинаковой скоростью, один из которых – эталон с известной удельной теплоёмкостью, другой – испытуемый образец. Проведен анализ кривых удельной теплоемкости гидроэкструдатов поли-е-капроамида от коэффициента экструзии. Отмечен сдвиг пика удельной теплоемкости в области температур Т=74-760С. Полученные экспериментальные данные показали, что характер изменения удельной теплоемкости образцов зависит от коэффициента экструзии, однако пока преждевременно говорить о том, что с изменением коэффициента экструзии в материале имеет место фазовый переход.[7]
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.














