166140 (740127)
Текст из файла
Министерство высшего образования РФ
Ульяновский Государственный Технический Университет
Кафедра « Химия »
Реферат на тему:
«Явление когезии и адгезии»
Выполнила ст-ка гр.ИЗОд-31
Муракаева Э.Н.
Проверил: Письменко В. Т.
Ульяновск 2005
Содержание
Введение
Глава1. Когезионные и поверхностные силы
Глава 2.Адгезия и работа адгезии
Глава 3.Механизм процессов адгезии
Глава 4.Связь работы адгезии с краевым углом
Заключение
Список используемой литературы
Глава 1. Когезионные и поверхностные силы.
Поверхностное натяжение различных конденсированных тел па границе с газом непосредственно связано с межатомным и межмолекулярным взаимодействием в конденсированной фазе. Взаимодействие (сцепление) молекул, атомов, ионов внутри одной фазы (гомогенной части системы) называют когезией..Когезия обусловлена теми же силами притяжения различной природы и определяет существование веществ в конденсированном состоянии. Когезионные силы и иногда называют силами аттракции (притяжения),
Рассмотрим количественные характеристики когезионного взаимодействия. Работа когезии определяется затратой энергии па обратимый изотермический разрыв тела по сечению, равному единице площади. Так как при разрыве образуется поверхность в две единицы площади, то работа когезии равна удвоенному значению поверхностного натяжения на границе с газом:
Wк = 2σ (1.1)
Применительно к идеальному твердому телу (отсутствие дефектов структуры) величину Wк часто называют прочностью на разрыв (обратимый), или когезионной прочностью. Реальные тела из-за наличия дефектов структуры имеют значительно меньшую {иногда в сто и тысячу раз) прочность.
Когезия отражает межмолекулярное взаимодействие внутри гомогенной фазы, поэтому ее могут характеризовать также такие параметры, как энергия кристаллической решетки, внутреннее давление, энергия парообразования, температура кипения, летучесть (определяемая разновесным давлением пара над телом) и др. Эти же параметры и количественно характеризуют и поверхностное натяжение тел на границе с газом.
Внутреннее давление жидкостей можно оценить с помощью уравнение Ван-дер-Ваальса. Молекулы в жидкостях находятся значительно ближе друг к другу, чем в газах, и ван-дер-ваальсовы силы межмолекулярного взаимодействия в них являются преобладающими, что и определяет жидкое агрегатное состояние.
В уравнение Ван-дер-Ваальса для реальных газов
(р+а/V2)(V-b)=RT (1.2)
где р— внешнее давление; V — мольный объем газа; а — постоянная, характеризующая межмолекулярное взаимодействие, b — постоянная, отражающая собственный объем моля молекул, входит внутреннее давление, oпределяемое соотношением:
рвн=а/ V2 (1.3)
Так как мольный объем жидкостей при нормальных условиях в тысячи раз меньше мольного объема газов, то соотношение а/V2 для жидкостей в миллион раз больше, чем для газов. Это значит, что внутреннее давление рвн к жидкостях очень велико, и поэтому можно пренебречь внешним давлением в уравнении Ван-дер-Ваа- льса. Тогда уравнение состояния для жидкостей примет вид:
A(V-b)/V2=RT или рвн =RT/(V— b) (1.4)
Точную информацию о когезии и поверхностном натяжении можно получить из термодинамических характеристик тел, связанных с энергией парообразования. В процессе испарения вещества происходит полный разрыв межмолекулярных связей, поэтому работа когезии определяется энтальпией парообразования:
Hn=Gn+TSn (1.5)
где Gn — изменение энергии Гиббса при парообразовании; S n—изменение энтропии при парообразовании.
Энтальпия парообразования твердых тел равна энергии кристаллической решетки.
В условиях равновесия между конденсированной и паровой фазами при p = const и Т=const Gn= 0 и тогда
Нп=ТSп (1.6)
Отсюда следует, что чем больше энтальпия парообразования, т. е. больше работа когезии, а значит и поверхностное натяжение, тем больше его энтропия. Так как
Sп=Sо-Rln(p/pатм) (1.7)
где Sо— изменение энтропии парообразования при температуре кипения: ратм — давление пара , равное атмосферному давлению.
Чем больше работа когезии (больше поверхностное натяжение), тем меньше давление насыщенного пара над веществом при данной температуре (меньше летучесть).
Величина S0, отнесенная к 1 моль вещества, имеет приблизительно одинаковое значение для многих неассоциированных жидкостей (правило Трутона), равное 85 — 90 кДж/ /(моль -К) . Таким образом, когеэию таких жидкостей (и поверхностное натяжение) можно оценивать и сравнивать по температуре кипения и энтальпии (теплоте) парообразования при температуре кипения.
Когда мы говорим об избыточной поверхностной энергии на границе раздела фаз, о нескомпенсированных силах поверхностных молекул и атомов и другом их физическом состоянии (поверхностное натяжение) по сравнению с состоянием молекул и атомов в объеме фаз (когезия), то в первую очередь подчеркиваем особенность термодинамического состояния веществ в поверхностных слоях. Эта особенность в каждом отдельном случае проявляется в ненасыщенности определенных физических сил и химических связей, характерных для конденсированных фаз, а для твердых тел поверхностные свойства зависят также и от типа кристаллических решеток. Естественно, свойства поверхности непосредственно отражают природу ионов, атомов и молекул, находящихся на ней.
Для жидкостей и большинства твердых тел когезионные силы выражаются в межмолекулярном взаимодействии, обусловленном ван-дер-ваальсовыми и водородными связями. Оно отличается от химического взаимодействия отсутствием специфичности и насыщаемости, небольшими энергиями, проявлением на значительно больших расстояниях. Разрыв таких связей приводит к формированию поверхности, обладающей соответственно перечисленными особенностями, т. е. способностью образовывать ван-дер-ваальсовы и водородные связи с молекулами, попадающими на эту поверхность;
При разрушении твердых тел. имеющих атомную кристаллическую решетку (кристаллы углерода, германия, кремнии и др.) разрываются ковалентные связи. Реакционная способность атомов па поверхности таких тел чрезвычайно велика. В условиях вакуума они способны образовывать между собой двойные связи, а на воздухе чаще всего реагируют с кислородом, образуя на поверхности оксидные пленки,
У ионных кристаллов распределение электрического заряда на поверхности значительно отличается от его распределения в объеме. В результате реакционная способность поверхности повышена к ионам противоположного заряда.
Из приведенных кратких сведений следует непосредственная взаимосвязь поверхностных свойств тел с их объемными свойствами. Разные кристаллические структуры резко отличаются по свойствам, в том числе и по энергии когезионных связей. Прослеживается уменьшение этой энергии в ряду кристаллов: ковалентные > ионные > металлические > молекулярные (ван-дер-ваальсовые). Кроме того, химическая и кристаллографическая структура различных граней одного и того же кристалла может существенно различаться. Более плотная упаковка атомов отвечает меньшей поверхностной энергии Гиббса данной грани и
соответственно меньшей ее реакционной способности.
Для большинства твердых веществ химические связи оказываются смешанными. Например, оксиды металлов в зависимости от природы металла, его степени окисления могут иметь различные доли ионной и ковалентной связей. Отсюда и неоднозначность реакционной способности поверхности.
Состав и структура твердых поверхностей зависят от условий их образования и последующей обработки. Например, поверхности оксидов в момент образования проявляют более высокую химическую активность, чем после выдерживания их на воздухе и тем более при высоких температурах. Значительное влияние на свойства поверхности оксидов оказывает предварительное взаимодействие с парами воды, например, на поверхности алюмосиликатов изменяется количественное соотношение между бренстедовскими и льюнсовскими кислотными центрами. Переход кислоты Льюиса кислоту Бренстеда можно представить следующим образом:
Таким образом, кислота, которая может принять электронную пару для образования ковалентной связи, в результате присоединения молекул воды переходит в кислоту, способную отдавать протон. Термообработка приводит к обратному процессу. Гидроксильные группы па поверхности смешанных оксидов также проявляют разную реакционную способность. Например. — ОН-группы на поверхности алюмосиликата могут связываться с атомом кремния, с атомом алюминия и с катионом щелочного металла. Кроме того, на реакционной способности гидроксильных групп сказывается взаимное влияние смешанных оксидов.
Глава 2.Адгезия и работа адгезии
Адгезия, смачивание и растекание относятся к межфазным взаимодействиям, которые происходят между конденсированными фазами. Межфазное взаимодействие, или взаимодействие между приведенными в контакт поверхностями конденсированных тел разной природы, называют адгезией (прилипанием). Адгезия обеспечивает между двумя телами соединение определенной прочности, обусловленное межмолекулярными силами.
Различают адгезию между двумя жидкостями, между жидкостью и твердым телом и между двумя твердыми телами. Очевидно, что смачивание и растекание предполагают наличие хотя бы одной из фаз в жидком состоянии и обусловлены адгезионным взаимодействием. Адгезии между двумя твердыми телами почти всегда способствует предварительный перевод хотя бы одной из фаз в жидкое состояние для увеличения интенсивности молекулярно-кинетического движения и осуществления необходимого контакта. Поэтому, как правило, адгезия и смачивание сопровождают друг друга и соответствующим образом характеризуют межфазное взаимодействие.
Из-за сложности протекающих процессов рассматриваемые о данном разделе межфазные явления до сих пор недостаточно изучены. Поэтому основное внимание будет уделено системам, в которых имеется хотя бы одна жидкая фаза, что позволяет обеспечивать равновесные обратимые условия и соответственна использовать термодинамические соотношении.
Адгезия — результат стремления системы к уменьшению попер. ч постной энергии. Поэтому адгезия является самопроизвольным процессом. Работа адгезии Wa, характеризующая прочность адгезионной связи, определяется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что н поверхностное натяжение (Дж/м2). Полная работа адгезии, приходящаяся на всю площадь контакта тел s, равна
Ws=Was
Чтобы получить соотношение между работой адгезии и поверхностными натяжениями взаимодействующих компонентов, представим себе две конденсированные фазы 2 н 3, имеющие поверхности на границе с воздухом 1, равные единице площади (рис. 1). Это могут быть две жидкости или жидкость и твердое тело. Для упрощения вывода будем считать, что они взаимно нерастворимы. При совмещении этих поверхностей, т. е. при нанесении одного вещества на другие, происходит адгезия. Так как система останется двухфазной, то возникнет межфазное натяжение, равное σ2,3. В результате первоначальная энергия Гиббса системы уменьшается на величину, равную работе адгезии, т. е.
G+Wa=0 или Wa=-G (2.1)
Для начального и конечною состояний системы имеем
Gнач=σ2,3+σ3,.1 и Gкон=σ2,3 (2.2)
где σ2,1 , σ 3,1 , σ2,3- соответственно поверхностное натяжение второго и третьего тела на границе с газом и межфазное натяжение на границе второго тела с третьим.Изменение энергии Гиббса системы в процессе адгезии равно
G=Gкон-Gнач=σ2,3-σ2,1-σ3,1
или
Wа =σ 2,1 +σ 3,1 -σ 2,3 (2.3)
Это уравнение Дюпре. Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение. В то же время чем больше работа адгезии, т. е. межфазное взаимодействие, тем меньше межфазное натяжение. Межфазное натяжение станет равным нулю, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз.
Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы их работ когезии. Очевидно, что здесь не учитывается энтропия смешения, которая способствует растворению.
Соответствующим образом межфазное натяжение зависит и от температуры. Если с повышением температуры взаимная растворимость фаз повышается, то межфазное натяжение уменьшается. Если же взаимная растворимость фаз с повышением температуры уменьшается, то межфазное натяжение увеличивается. Такая зависимость наблюдается и для межфазной границы жидкость - твердое тело. Таким образом, производная da/dT для границы раздела конденсированных фаз может быть меньше, больше и равна нулю.
Так как уменьшение межфазного натяжения сопряжено с тенденцией к выравниванию состава фаз, то оно может снизиться до нуля при достижении верхней или нижней критической температуры, т. с. при полном взаимном растворении фаз.
От работы адгезии необходимо отличать адгезионную прочность Wn — работу, затраченную на разрушение адгезионного соединения. Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей (работа Wa), так и работа, затраченная на деформацию компонентов адгезионного соединения (работа деформации Wдеф):
Wп = Wа + Wдеф
Очевидно, чем прочнее адгезионное соединение, тем в большей степени подвергаются деформации компоненты системы
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.