166137 (740125), страница 2
Текст из файла (страница 2)
Переваривание белков в желудке.
В желудочном соке содержится активный фермент – пепсин. Он гидролизует преимущественно пептидные связи, образованные аминогруппами ароматических кислот (фенилаланин, тирозин). Расщепляет практически все природные белки. Исключение составляют кератиды, протамины, гистоны и мукополисахариды.
Реннин катализирует свертывание (створоживание) молока, т.е. превращение растворимого казеиногена в казеин.
Переваривание белков в кишечнике:
В поджелудочной железе вырабатываются 3 белковых фермента: трипсин, химотрипсин и карбоксипептидаза.
Трипсин и химотрипсин разрывают внутренние пептидные связи. Дальнейший гидролиз пептидов до свободных АК осуществляется под влиянием карбоксипептидазы, аминопептидазы и дипептидаз. Продукты гидролиза белков всасываются в желудочно-кишечном тракте в основном в виде АК. Аминокислоты после всасывания в кишечнике, через воротную вену поступают в печень, часть из них разносится кровью по всему организму и используется для физиологических целей.
В печени используются АК:
Для синтеза белков и белков плазмы крови, пуриновых и пиримидиновых нуклеотидов, НАД. Различная скорость проникновения АК через биомембраны клеток свидетельствует о существовании в организме активной транспортной системы, обеспечивающей перенос АК как через внешнюю клеточную мембрану, так и через систему внутриклеточных мембран. Тонкие механизмы этого процесса нерасшифрованы.
Из других путей превращения АК важное значение играют следующие:
Дезаминирование, переаминирование и декарбоксилирование.
Дезаминирование – процесс расщепления АК под действием ферментов дезаминаз или оксидаз с выделением аммиака и образованием безазотистого остатка, происходящим несколькими путями, в том числе восстановительным, гидролитическим, внутримолекулярным и окислительным. У животных и человека преобладают два последних вида дезаминирования. Окислительному дезаминированию подвергается глутаминовая кислота, фермент глутаматдегидрогеназа.
Переаминирование – непосредственный перенос аминной группы от АК на кетокислоту без освобождения аммиака. Фермент – аминотрансфераза. Эти реакции обеспечивают а) биосинтез заменимых АК, б) распад АК, в) объединение путей обмена углеводов и АК.
Декарбоксилирование – под действием декарбоксилаз АК происходит отщепление от АК углекислого газа и образуются соответствующие амины. Образующиеся амины называют биогенными аминами. Гистидин – вызывает расширение капилляров, сужение крупных сосудов, сокращение гладкой мускулатуры внутренних органов, усиление секреции соляной кислоты в желудке. Серотонин способствует повышению кровяного давления и сужению бронхов. Альфа-аминомасляная кислота служит медиатором торможения нервной системы. В организме биогенные амины находятся в неактивной связанной форме, из которой они освобождаются по мере необходимости, Разрушаются в печени моноаминооксидазами.
В итоге распада АК в организме образуется аммиак. Углекислый газ и вода. Углекислый газ частично выводится из организма или используется для синтеза жирных кислот, глюкозы и т.д. Аммиак очень токсичен и организм выработал механизмы его обезвреживания. Основные – образование глутамина. Это восстановительное аминирование – процесс, обратный дезаминированию.
Основная часть АК, поступивших с пищей или образовавшихся при распаде тканевых белков расходуется на биосинтез белка.
Оставшаяся часть АК подвергается специфическим превращениям и принимает участие в образовании:
Глицин –участвует в синтезе креатина, серина, гемоглобина, пуриновых азотистых оснований
Аланин – при его дезаминировании образуется пировиноградная кислота, он участвует в синтезе глюкозы, гликогена и ацетил КоА.
Метионин является участником синтеза холина, тимина, адреналина, креатина.
Серин – является исходным веществом для синтеза 3-фосфоглицериновой кислоты, одного из субстратов обмена глюкозы и гликогена, пировиноградной кислоты, цистеина.
Глутаминовая и аспарагиновая кислоты участвуют в обезвреживании аммиака, в реакциях цикла Кребса.
Аргинин участвует в синтезе мочевины
Гистидин – в синтезе гемоглобина, при распаде образует биогенный амин – гистамин.
Патология белкового обмена.
Одной из причин нарушения обмена белков является недостаточное его потребление. Может быть и вторичным, т.е. может развиваться на основе других заболеваний (нарушение переваривания, кровотечениях, заболеваниях печени).
Чаще всего связано с нарушением соотношения АК, имеющих экзогенное (при недостатке незаменимых АК) и эндогенное (связанное с нарушением обмена отдельных АК). Причиной экзогенной недостаточности является однообразное белковое питание с ограниченным потреблением животных белков и как следствие недостаточность незаменимых АК.
Экзогенные нарушения обмена АК могут быть вызваны наследственными заболеваниями, имеющими в своей основе падение активности ферментов, ответственных за синтез заменимых АК или их превращений.
Например, альбинизм возникает при нарушении синтеза пигмента меланина и сопровождается отсутствием характерной окраски волос, радужной оболочки глаз, кожи. Волосы и кожа имеют неестественный белый цвет.
Недостаток триптофана имеет следствием нарушение деятельности сердца и помутнение хрусталика (катаракта).
Снижение уровня метионина приводит к поражению поджелудочной железы.
Возникновение и дальнейшее развитие специфического патологического синдрома при этих заболеваниях обусловлено полным или частичным выключением определенных ферментативных активностей.
Организм либо теряет способность синтезировать данный фермент, либо его образуется недостаточное количество, либо синтезируется аномальный фермент, по структуре отличающийся от нативного.
Следствием является накопление в тканях повышенного содержания продуктов обмена, оказывающих токсическое действие на организм и в первую очередь на ЦНС.
ЛИТЕРАТУРА
-
Мецлер Д. Биохимия. Т. 1, 2, 3. “Мир 2000
-
Ленинджер Д. Основы биохимии. Т.1, 2, 3. “Мир” 2002
-
Фримель Г. Иммунологические методы. М. “Медицина 2007
-
Медицинская электронная аппаратура для здравоохранения. М 2001
-
Резников А.Г. Методы определения гормонов. Киев “Наукова думка 2000
-
Бредикис Ю.Ю. Очерки клинической электроники. М. “Медицина 1999















