CBRR5816 (739536), страница 6
Текст из файла (страница 6)
1.4.3 Распределение примеси после перераспределения примеси накопленной в приповерхностном слое полупроводника при Т=950ОС=1223 К и времени диффузии 30мин=1800с. Условие перераспределения полностью отражающая граница. Т=1150ОС=1423 К, время 2 часа=7200с.
Произведение D1t1 для процесса загонки равно: D1t1 = 3,3110-15 5,95810-12 см2
Коэффициент диффузии для процесса перераспределения примеси (Do =0,374 см2/с , = 3,41 эВ, T = 1423 K) равен D = 3,128 10-13 см2/с. Произведение D2t2 = 3,12810-13 2,2510-9 см2. D2t2 > D1t1 (в 377 раз), т.е. условия быстрой истощаемости источника, следовательно, пользуемся для расчета распределения примеси выражением (27).
В первый столбец таблицы (6) заносим значения x, во второй значения exp(-x2/4D2t2), рассчитанные значения Ns заносим в третий столбец.
Таблица 6 - Результаты расчета распределения галлия в кремнии при диффузии из приповерхностного слоя.
Полученные результаты используются для построения графика N = f(x) - примесного профиля.
Заключение.
В данном курсовом проекте были рассмотрены процесс очистки полупроводникового вещества – зонная плавка и способ введения примеси в полупроводник – диффузия примеси.
Для процесса зонной плавки произведен расчет для трех очищаемых примесей: фосфор, галлий, сурьма. Результаты расчета представлены в виде таблиц и графиков: распределение удельного сопротивления и распределения каждой примеси вдоль слитка кремния после очистки зонной плавкой (один проход расплавленной зоной).
Эффективность очистки зависит от скорости кристаллизации: чем меньше скорость кристаллизации в донной примеси, тем лучше она очищается, таким образом при Vкр0 kэффk0; Vкр kэфф1. Но это не означает, что если мы уменьшим скорость кристаллизации до нуля, то получим исходное вещество в чистом виде – это лишь одно из условий очистки вещества. Определяющим является также равновесный коэффициент сегрегации (К0) , который отражает эффективность перераспределения между жидкой и твердой фазой, он должен отличаться от еденицы в большую или меньшую сторону. В нашем случае k0 Sb
Анализ второй части расчета – метод введения и перераспределения примеси – диффузии показывает, что при условии бесконечного источника примеси на поверхности пластины и одинаковом времени диффузии профиль распределения примеси в полупроводнике будет различен при нескольких температурах. Таким образом изменяя температурный режим можно изменить профиль распределения примеси в глубину полупроводника.
Литература.
-
Готра З.Ю. Технология микроэлектронных устройств. Справочник. - М.: Радио и связь, 1991. -528 с.
-
Шишлянников Б.М. Физико-химические основы технологии микроэлектроники. Методические указания к курсовому проектированию для студентов направления 550700. Новгород, 1998. – 41с.
-
Нашельский А.Я. Технология полупроводниковых материалов. - М.: Металлургия, 1972. - 432 с.
-
Реньян В.Р. Технология полупроводникового кремния / Пер. с англ. - М.: Металлургия, 1969. - 336 с.
-
МОП СБИС. Моделирование элементов и технологических процессов /Под ред. П. Антонетти и др.; Пер. с англ. - М.: Радио и связь. 1988. - 496 с.















